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Using molecular dynamics simulations, we show that a simple model of a glassy material exhibits the
shear localization phenomenon observed in many complex fluids. At low shear rates, the system
separates into a fluidized shear band and an unsheared part. The two bands are characterized by a very
different dynamics probed by a local intermediate scattering function. Furthermore, a stick-slip motion
is observed at very small shear rates. Our results, which open the possibility of exploring complex
rheological behavior using simulations, are compared to recent experiments on various soft glasses.
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6�, with �;	� A;B. band is localized close to one of the walls, so that a single
Shear localization is a commonly observed phenome-
non in the rheology of complex fluids. Over some range of
shear rates, a fluid undergoing simple shear flow in, for
example, a Couette cell tends to separate into bands
parallel to the flow direction, with high shear rate regions
coexisting with smaller shear rate regions. In some cases
[1], this shear-banding phenomenon can be understood in
terms of underlying structural changes in the fluid, analo-
gous to a first order phase transition. In other systems,
however, no such changes are evident, and coexistence
appears between a completely steady region (zero shear
rate) and a sheared, fluid region. This second type of
behavior has been observed [2–6], in particular, in sys-
tems of the so-called ‘‘soft glass’’ type [7]. Such systems
include dense colloidal pastes, granular materials, emul-
sions, etc., Their rheological behavior is essentially de-
termined by the competition between an intrinsic slow
dynamics and the acceleration caused by the external flow
[7–9]. The large time scales inherent to the glassy state
manifest themselves in the nonlinear character of the
rheological properties as a function of the shear rate _��:
existence of a yield stress (the system does not flow until
the stress � exceeds a threshold value �y) and nonlinear
flow curves � � �� _���.

The observation of strong heterogeneities in the flow of
such systems suggests that a global flow curve is not
sufficient to fully characterize the flow behavior. Indeed,
a simple shear-thinning behavior would in general imply
homogeneous shear flow in a planar Couette cell, since
the shear stress is constant across the cell. More generally,
it remains to clarify if these observations in systems with
very different microscopic interactions are intrinsic to
glassy dynamics, that is, if a generic scenario for inho-
mogeneous shear flow can be proposed, as attempted in
several recent studies [10,11].

In order to investigate this issue, we performed mo-
lecular dynamics simulations of a generic glass forming
system, consisting of an 80:20 binary mixture of A and B
particles interacting via a Lennard-Jones potential,
0031-9007=03=90(9)=095702(4)$20.00 
The parameters �AA, �AA, and mA define the units of
energy, length, and mass. The unit of time is then given
by 
��AA

�����������������
mA=�AA

p
. Furthermore, we choose �AB �

1:5�AA, �BB � 0:5�AA, �AB � 0:8�AA, �BB � 0:88�AA,
and mB �mA. All simulations have been carried out at
a fixed density of �� 1:2. This model system has been
extensively studied [8,9,12] and exhibits, in the bulk
state, a computer glass transition (in the sense that the
relaxation time becomes larger than typical simulation
times) at a temperature Tc ’ 0:435 [12].

We first equilibrate a large simulation box with peri-
odic boundary conditions in all directions, at T � 0:5.
The system is then quenched to a temperature below Tc.
Most of the results discussed in this Letter correspond to
T � 0:2. At this temperature, the structural relaxation
times are orders of magnitude larger than at Tc. On the
time scale of computer simulations, the system is in a
glassy state, in which its properties slowly evolve with
time (aging). After a time of t � 4� 104 [2� 106 mo-
lecular dynamics (MD) steps], we create two parallel
solid boundaries by freezing all the particles outside
two parallel xy planes at positions zwall � 	Lz=2 (Lz �
40). For each computer experiment, ten independent
samples (each containing 4800 particles) are prepared
using this procedure. Note that the system is homogene-
ous in the xy plane (Lx � Ly � 10). We thus compute the
system properties as an average over particles within thin
layers parallel to the wall.

An overall shear rate is imposed by moving in the x di-
rection all the atoms of, for instance, the left wall (zwall �
�20) with a strictly constant velocity of Uwall. This
defines the total shear rate _��tot � Uwall=Lz. Velocity pro-
files are recorded discarding transients (of typical dura-
tion 1= _��) associated with the start of the shear motion.

Our main observation is reported in Fig. 1.We find that,
at low overall shear rates _��tot, the system separates into a
homogeneously sheared band and a part which is essen-
tially unsheared. Note that the velocity profiles are not
symmetric with respect to the midplane. Rather, the shear
2003 The American Physical Society 095702-1
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FIG. 1 (color online). Filled symbols: rescaled velocity pro-
files, u�z�=Uwall, from two independent simulation runs. In both
cases, the left wall is moved with a constant velocity Uwall �
3:33� 10�3 ( _��tot � 0:83� 10�4). Because of Galilean invari-
ance, the sheared region may be located at either the moving
or immobile wall. Open symbols: rescaled velocity profiles
obtained at higher wall velocities Uwall � 3:33� 10�2 and
3:33� 10�1 corresponding to overall shear rates of _��tot �
0:83� 10�3 and 0:83� 10�2. Note that the local shear rate
of the sheared region is smaller at smaller Uwall.
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interface between sheared and steady region is formed.
The symmetry between the two walls, which is a result of
Galilean invariance, is restored only on average, the shear
band occurring equally likely on both sides of the simu-
lation cell (see Fig. 1). A similar behavior has been
observed in various experiments [2–6].

We observed oscillations of the velocity profile between
the two mentioned solutions. This effect is possibly re-
lated to the finite size of the simulation box leading to a
finite probability for the band to oscillate. In contrast, this
probability would be zero for (very large) experimental
systems, thus stabilizing one of the solutions. Within a
given solution, we also observed fluctuations of the posi-
tion of the interface between the two bands. These fluc-
tuations increase with Uwall, so that at high Uwall the
average velocity profile no longer exhibits a sharp sepa-
ration between the jammed and the fluidized region (see
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triangles in Fig. 1). A detailed discussion of these aspects
is beyond the scope of this paper and we postpone it to a
future report.

As shown in Fig. 1, the thickness h of the sheared
region depends on the wall velocity Uwall. For very small
Uwall, h is of the order of a few atomic diameters and
varies only slightly with the wall velocity. As a conse-
quence, the shear rate inside the sheared region, of order
Uwall=h, increases with Uwall. As Uwall is further in-
creased, h increases to reach the full slab size, h � Lz,
at a given wall velocity, Uc. For Uwall > Uc, the velocity
profile is therefore linear, as is observed in simple fluids.
These findings are in qualitative agreement with experi-
mental results on clay suspensions [3]. The rather slow
variation of h with respect to a change of _��tot at small
wall velocities should, however, be contrasted to reports
in [6]. However, the small size of our system compared to
the width of interfacial regions makes a more quantitative
analysis rather difficult for the moment. At a given global
shear rate _��tot � 10�4�Uwall � 0:004�, we also studied the
influence of temperature on shear localization. We find
that increasing the temperature is qualitatively similar to
increasing the global shear rate: The thickness of the
sheared region is an increasing function of the tempera-
ture. For example, h 
 20 [see Fig. 1] at T � 0:2, whereas
h 
 30 at T � 0:4 and h 
 Lz�� 40� at T � 0:5.

We find no obvious structural differences between the
two regions of the sample. As shown in Fig. 2 (right
panel), static properties such as the density profile, shear
stress, and normal pressure are found to be constant
across the film [13]. The distinction between the two
bands is therefore purely dynamical. This can be seen
for instance on the layer-resolved intermediate scattering
function, �q�t; z� �

P
ihexpfiqy�yi�t� � yi�0��g��zi � z�i.

We choose qy � 7:1, which corresponds to the first maxi-
mum of the static structure factor. The left panel of
Fig. 2 depicts �q�t; z� obtained from a simulation with
_��tot � 0:83� 10�4. One may first note the existence of

two limiting behaviors of the correlation function, cor-
responding to the sheared and jammed regions, with
a rather rapid change from one behavior to the other
within a few layers. While in the jammed region (close
to the right wall in Fig. 2) �q�t; z� barely relaxes, the
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FIG. 2 (color online). Left panel: Inter-
mediate scattering function, �q�t; z�, com-
puted within layers of thickness dz � 2.
From bottom to top, z��17;�15; . . . ;15;
17. The temperature is T�0:2, and _��tot�
0:83�10�4. The vertical dashed line
marks the time 
0�5754
0:5= _��tot.
Right panel: plot of �q�
0;z� (connected
diamonds), velocity profile (filled circles),
local shear stress �xz�z� (connected tri-
angles), normal pressure PN�z� (open
diamonds) , and density profile ��z� (con-
nected stars).
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correlation function in the sheared region (close to the
left wall) exhibits a two-step relaxation as observed in
homogeneously sheared systems. This observation re-
flects the acceleration of the structural relaxation due to
the flow [9]. In the jammed region, the system behaves as
a glassy solid, and �q�t; z� does not relax to zero on the
simulation time scale.

A way to quantify the relation between the structural
relaxation and the variation of the shear rate across the
system is to look at the quantity �q�
0; z�, where 
0 is
of the order of 1= _��tot. This quantity reflects the way the
system has relaxed on the time scale imposed by the
global shear rate. Results for �q�
0; z� are shown in
the right panel of Fig. 2. The change of the velocity
profile, when going from the sheared towards the un-
sheared region, is accompanied by a sharp jump in
�q�
0; z� at the interface between these two regions.
The profile of �q�
0; z� is very similar to that of an order
parameter across an interface [14]. Other order parame-
ters could be proposed to characterize the local dynamics:
For example, the local relaxation time of�q�t; z�, defined
as the time after which �q�t; z� goes below a fraction of
unity or the local diffusion coefficient parallel to the
walls. All these definitions lead to a two-phase picture,
with well-defined and spatially constant local character-
istics in both phases.

In Fig. 3, we summarize the results by plotting the
�� _��� flow curve of the model at T � 0:2. In this figure, we
indicate the flow curve obtained for a system undergoing
homogeneous shear flow, taken from Ref. [9]. We also
show the points obtained for the same system driven by
the boundaries, as described in the present paper. For a
given global shear rate, _��tot, the shear stress correspond-
ing to a localized solution is larger than the one in the
homogeneous shear flow. This point can be understood by
noting that, in the case of a boundary driven flow, the
actual shear rate in the fluidized region is larger than _��tot
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FIG. 3 (color online). Connected diamonds: �xz versus _��
under homogeneous flow conditions at T � 0:2. Connected
circles: �xz versus _��tot in the boundary-driven shear flow.
The vertical dashed line is an estimate of the global shear
rate below which shear localization is expected.
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and thus the corresponding shear stress slightly larger
than that obtained by a homogeneous shear. We also
note that no hysteresis is found in the flow curve as
measured in our simulation: The same flow curve is
obtained by increasing and decreasing the shear rate
(not shown). It is interesting to note that, in the ‘‘banding
regime,’’ the shear stress does not exhibit a plateau, in
contrast to predictions of some recent phenomenological
models [10,11]. This behavior can be traced back to the
dependence of the local shear rate in the fluidized region
as a function to _��tot.

To obtain the static yield stress, �y, we apply a small
tangential force, FT , acting on the left wall (treated as a
rigid object with overdamped dynamics) for a certain
amount of time, during which the velocity profile, u�z�,
is sampled. The force on the wall is then slightly in-
creased for a new measurement before going over to the
next higher value. The static yield stress is then defined as
the smallest force (per unit area) for which the average
streaming velocity in the left half of the system, uav;left �R
0
�20 u�z�dz=20, exceeds a minimum value, umin. We em-

pirically found that a measurement time of 4� 103 [5�
104 MD steps] and umin � 4:10�4 are reasonable choices
in the sense that an increase of the measurement time or a
decrease in umin do not change�y significantly. Again, for
each initial configuration, the system is first equilibrated
at T � 0:5 before being quenched to a temperature below
Tc � 0:435. The system is then propagated with FT � 0
for a time tw before the very first increment of the tan-
gential force. At T � 0:2 and using an increment of
dF � 0:02 (once in 5� 104 MD steps), we have ob-
tained �y � 0:596	 0:022, 0:658	 0:009, and 0:652	
0:015 corresponding to waiting times of tw � 103, 4�
103, and 4� 104, respectively. Thus, already at a waiting
time of tw � 4� 103, aging effects on�y are negligible at
the temperature studied. Note that, due to aging effects,
�y might also depend on the speed at which the threshold
value of the tangential force is reached. Therefore, we
have determined �y for a higher value of dFT � 0:05 in
the case of T � 0:2 and tw � 4� 104. This gives �y �
0:66	 0:015 which agrees well with 0:652	 0:015
within the error bars.

It can be seen in Fig. 3 that �y > �� _��tot ! 0�.
Therefore, shear banding can be expected in the region
limited by the vertical dotted line, which corresponds to
�� _��tot�<�y. Once the yield stress �y is added to the flow
curve, the shear rate becomes multivalued in a range of
shear stress, a situation encountered in several complex
fluids [1]. This is the very origin of the shear banding we
observe. As a consequence, this phenomenon should be
generic for many soft glassy materials.

Finally, in the very low shear rate region, we observe a
time dependence of the shear stress characteristic of
stick-slip behavior, as demonstrated in Fig. 4. This is
reminiscent to what is observed in friction simulations
[15]. Because of numerical limitations, the limit between
continuum sliding and stick-slip behavior could not be
095702-3
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FIG. 4 (color online). Shear stress versus time for _��tot �
0:83� 10�6 at T � 0:2. The stress rises up to a value close
to �y ’ 0:65, before suddenly dropping to a value smaller than
the one obtained in a homogeneous flow (�xz ’ 0:4�.
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precisely located. Qualitatively, this behavior is obtained
when the thickness of the sheared layer h becomes of the
order of a few particle diameters, which also corresponds
to the width of the interface separating the sheared and
jammed regions.

Our results lead to the following picture. (i) For global
shear rates _��tot smaller than a critical value, _��c � Uc=Lz,
the system separates spatially into two regions, one
with a finite, approximately uniform, shear rate, the other
being jammed; (ii) when the total shear rate is increased,
the thickness of the sheared region increases; (iii) for
_��tot > _��c, h reaches the thickness of the slab, so that

the flow is homogeneous with a linear velocity profile;
(iv) at very small total shear rates, a stick-slip phenome-
non is obtained; (v) the flow profile closely follows the
local dynamics of the material, the strongly sheared
region corresponding to a rapid structural relaxation,
the jammed region to a glassy solid. The qualitative
agreement of these phenomena with experimental obser-
vations in very different systems is remarkable: Ref. [3]
describes explicitly the same scenario for the flow behav-
ior of a clay suspension, including the stick-slip at very
small shear rates. A more quantitative study of the flow
profiles has been performed in Ref. [6] using a magnetic
resonance imaging technique, confirming the existence
of well-defined jammed and flow regions, whose relative
width depends on the global shear rate. In contrast to
molecular simulations, an experimental determination
of velocity profiles together with a local probe of the
dynamics is difficult, which makes the observation of
such effects in simulations particularly promising. Our
results also constrain phenomenological descriptions of
the flow scenario. It is important to remark that models
relating the local shear stress to the local shear rate, as
� � �c � � _��n (� being a constant and n � 1 corre-
095702-4
sponding to Bingham fluids, and n < 1 to Herschel-
Buckley fluids), are unable to account for these results.
As emphasized above, the shear stress is constant
throughout the Couette cell, so that any of the aforemen-
tioned models would predict a constant shear rate in the
cell, in contrast to the present results. It appears therefore
necessary to include explicitly nonlocal terms in phe-
nomenological descriptions [1,10]. The existence of a
close connection between velocity profile and local dy-
namics supports some of the assumptions of recent ap-
proaches treating the local ‘‘fluidity’’ of the system as an
‘‘order parameter’’ [11]. More detailed simulations, with
systematic investigation of size effects, should allow a
direct comparison with the predictions of such models.
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