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Using nonequilibrium molecular dynamics simulations, we compute the shear visepsitgf a

glass forming polymer melt at temperatures ranging from the normal liquid state down to the
supercooled state. For this purpose, the polymer melt is confined between two solid walls and a
constant force pointing in direction parallel to the walls is applied on each monomer thus giving rise
to a Poiseuille flow. It is shown thajs(T) does not exhibit an Arrhenius-type behavior but can be
described both by a power la@mode coupling theogyand by a Vogel-Fulcher—Tammann law. A
similar behavior is observed in recent experiments above the glass transition temperature. The
diffusion coefficient is computed using the mean square displacements in direction perpendicular to
the flow. Combined with the knowledge gf(T), it is then shown that the Stokes—Einstein relation

is valid at high temperatures, whereas deviations are observed in the supercooled regime in
agreement with experiments. Moreover, the local viscogify), is also computed and its reliability

is discussed. Using the sharp riserfz) close to the wall, we estimaig,,, the effective position

of the wall. It is found that,,,, moves towards the film center at lowEthus leading to a decrease

of the (hydrodynamig width of the system. Furthermore, we observe that the curves(for . at

various temperatures superimpose if the data are depicted zersyg,(T). This suggests that the
spatial and temperature dependence of the local viscosity separate if the effective position of the
wall is chosen as a new reference plane. 2@02 American Institute of Physics.

[DOI: 10.1063/1.1503770

I. INTRODUCTION port coefficients?12 The basic idea of this method is to
study the response of the system under a weak external force
The properties of glass forming materials and in particuield. In the present work, we are going to apply this tech-
lar the glass transition itself have been the subject of extemique for a study of the shear viscosity of a nonentari‘éled
sive experimental and theoretical investigatibms These polymer melt in a temperature interval ranging from the nor-
studies were enriched by important contributions from commal liquid state down to the supercooled region. For this
puter simulation¥” which have the advantage of providing purpose, the system is confined between two solid walls and
more detailed information on the microscopic level. How-g constant forc&® is applied on each fluid atogmonomey.
ever, while estimating single-particle quantities from simu-The situation is similar to that of a confined fluid subject to a
lated data is rather a simple task, computing collective transgniform gravitational force acting in a direction parallel to
port coefficients may prove more difficult. Within an the system boundaries. Sokhan, Nicholson, and Quirke, for
ordinary(equilibrium) molecular dynamicéMD) simulation,  example, used this approach to induce a Poiseuille flow in a
for example, the self-diffusion coefficient can be obtained bysimple fluid confined between two planar solid walls made of
monitoring the mean square displacements of a tagged pagarbon atoms? They studied the influence of both the sur-
ticle, whereas the computation of the shear viscosity requiregce corrugation and the adsorption potential on the hydro-
the use of the corresponding Green—Kubo relation, i.e., th@ynamic boundary condition with the result that even in the
evaluation of the integral over time of the stress autocorrelaggse of a strongly adsorbing potential a large slip length can
tion function (ACF). However, it is well-known that an pe gpserved provided that the surface corrugation is not too
evaluation of the time integrals of autocorrelation functionshigh_
in finite systems leads to vanishing results unless the integra- Rheological properties of the present polymer model
tion is limited to a maximal timetyay, usually taken as the (see Sec. )ihave been studied in Ref. 15 via NEMD in order
first zero of _t.he.Acr§:9 . _ to obtain more evidence for a dynamical crossover which has
Nonequilibrium molecular dynamicéNEMD) simula-  gready been observed in equilibrium studies of polymer
tions provide an alternative way for the computation of transp,g[t516:17 During these rheological studies, the viscosity was
determined for various chain lengthg, as a function of the
dElectronic mail: varnik@cecam.fr shear rate thus allowing an estimate of the chain length de-
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pendence of the viscosity in the limit of vanishing shear rateit is shown that temperature profiles are formed if the viscous
As a result, a crossover from a Rouse-type behdigP  heat is removed only through the heat transfer to the walls.
«1/N,, D being the self-diffusion constant of the chaits  The observed temperature profiles are found to be in good
the reptation regimé (D« 1/Nf)) was found at a chain length agreement with theoretical predictioffsThe results of ex-

of Np=100+10. However, to our knowledge, a nonequilib- tensive MD simulations on the temperature dependence of
rium simulation study of théemperature dependencé the  the shear viscosity are presented in Sec. V. An analysis of the
viscosity and the Stokes—Einstein relation for a model oflocal viscosity,7(z), is the subject of Sec. VI and Sec. VI
polymer melt near the glass transition has not been done ygbresents our conclusions.

This is one of the main objectives of the present work.

In real experiments a pressure gradievip, is often
used to induce a flow. However, there is an alternative to thi
choice which is more suitable for molecular dynamics simu-
lations. Consider a fluid subject to a homogeneous field ex- We study a bead—spring model of a monodisperse poly-
erting the forceF®=F®e, on each individual particle. The mer melt”?” of short chains(each consisting of 10 mono-

|. A BEAD-SPRING POLYMER MODEL AND THE
ALLS

momentum conservation equation for this systeth4g?! mer9 embedded between two solid walls. Two potentials are
dur.t) used for the interaction between particles. The first one is a
u r,t . _ . .
(1) = V.P+p(r t)E® truncated and shlft_ed Lenna_rd Jong@s]) potential which
dt acts between all pairs of particles,

=—=V-II-Vp+p(r,H)F®, (1) Via(r) =Vi(re) if r<re,

0 otherwise,

Up(r)= [ 2
where we introduced theviscous pressure tensal =P
—plaxs (pis the well-known hydrostatic pressiretting  where  V y(r)=4e;[ (o /r)**=(0y;/r)®]  and r.=2
F°¢=0 along withVp#0 in Eq. (1) corresponds to the case ><21’60ij . The index paifij allows us to distinguish between
where the system is driven by a pressure gradient. On theonomer—monomeimm), wall-monomerwm), and wall—
other hand, the choicE®+#0 along withVp=0 is the situ- wall (ww) interactions. To ensure the connectivity between
ation we are going to study. The point is that the systenfdjacent monomers of a chain, we use a FENE-pote'itial,

cannot distinguish between these cases. In addition to the r\2
4

simplicity of implementation in a MD-code, the use of an Upener)=— ;Rgln

external field instead of a pressure gradient allows the system

to remain longitudinally homogeneotfs.(In real experi- Here, k=30emm/0%, is the strength factor andR,
ments, the fluid remains nearly incompressible under the ap=1.50,, the maximum allowed length of a bond. If not
plied pressure gradient. However, to obtain a satisfactory sigexplicitely mentioned, all lengths are measured in units of a
nal to noise ratio, pressure gradients used in MD simulationsnonomer diameterr,,,,, all masses in units of monomer
are considerably higher and might lead to significant densitynassm,,,, and energy in units o&,,,,. Other quantities are
variations. A combination of these density variations withmeasured in suitable combinations of these basic units. The
periodic boundary condition would then lead to discontinui-unit of temperature, for example, &,,/Kg, (kg=1), that
ties in the density at system boundaries, i.e., when goingf time omyMym/ €mm €tC.

from the basic simulation box to one of its adjacent image  The left panel of Fig. 1 compares the bond poteritiel,
systems. the sum of LJ- and FENE-potentialwith the LJ-potential. It

We stress that the main objective of the present work ishows that the bonded monomers prefer shorter distances
not a thorough study of the hydrodynamic boundary condi-than the nonbonded ones. Thus, our model contains two in-
tions and their dependence on the fluid—wall interactions, burinsic length scaleésee right panel of Fig. 1 for a schematic
an analysis of the temperature dependence of the shear vidlustration). Since these length scales are chosen to be in-
cosity at low temperatures. Nevertheless, we will give a shortompatible with afcc or bco crystalline structure and since
overview of what happens at system boundaries for two difour chains are flexibléno bond angle or torsion potentigls
ferent choices of the wall-monomer interaction parametersone could expect that the system does not crystallize at low
It will be shown that stronger attraction and a better adaptatemperatures, but remains amorphdugxtensive equilib-
tion of the fluid structure to théperiodig structure of the rium studies of the present model showed that the model is
wall lead to the so called stick boundary condition, whereasndeed suitable for the study of the glass transition both in
considering an interaction potential where wall and fluid at-the bulk and in confined geomef$/?°-32
oms are equivalent gives rise to a large slip at the fluid—wall  In the present simulation, the system is confined between
interface. In this respect, the results of our polymer modetwo layers of triangular lattice sites; oq. A wall atom is
qualitatively agree with those obtained for simple coupled to its lattice site by a harmonic potential,
liquids®?*~2*and for thin films of hexadecarfe. . )

The next section is devoted to an introduction of the Unarnd 1) = 2Kharml 1 ~ i ed ™ @)
model. In Sec. Il we discuss the influence of the fluid—wall The force constan¥,m, iS @ measure of the stiffness of the
interaction parameters on the boundary condition. Section Nharmonic spring. We sé,,,,,,= 100 which is close to 114.3,
deals with different methods for removing the viscous heat irthe force constant corresponding to the harmonic approxima-
order to keep the system temperature constant. In particulation of the LJ-force in a fcc-lattice. This choice is motivated

1_
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i
5 hond-potential 1 FIG. 1. Left panel: Lennard-Jones potential) vs the
f ﬁf;f J;'fggg‘& ; bond potential, the sum of the LJ and FENE potentials.

The bond potential is shifted by 2@ lower values for
the sake of comparison with the LJ potential. The mini-
mum position of the bond-potential is smaller than that

af LJ of the LJ-potential: The bond potential has its minimum
| === atr=0.960, whereas that of a pure LJ-potential lies at
0.0 F---- L | T
bond

Li-potential r=%2¢. Due to the incom_p_atibility of these length
scales and due to the flexibility of our modelo bond
\Q angle or torsion potentiglsone expects that cooling the
system would not lead to crystallization, but the system
---------------------- maintains the amorphous structure typical of the liquid
Moe 10 11 12 13 14 15 phase.
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by comparable simulation on simple liquithsEach wall boundary conditions are appliedsrandy directions only. In
atom interacts with monomers via a Lennard-Jones potentighe x direction, a constant shear fordef, is applied on each
[see Eq(2)] with o, the preferred monomer—wall distance monomer.
and e,,, the depth of the corresponding potential well. Two lateral system sizes have been investigated during
We emphasize here that our goal is not a realistic deeur simulationsi,=L,=11.11 and_,=L,=10.05. In both
scription of monomer—wall interactions for polymer melts; cases, the number of particlesNs=2000 and the distance
rather we wish to study a generic model, suitable as a tool tbetween the solid walls i® = 20. The reason for a change of
calculate shear viscosity over a wide temperature rangehe lateral system size was the observation of a phase sepa-
Therefore, in order to make sure that polymers would notation (partial drying at the wallat low temperature fok.,
penetrate the walls, we have introduced an additional poten=L,=11.11. This phenomenon is avoided at &lfor the
tial barrier acting on the monomers via smaller lateral dimension.

9
ag
Uy (d)= emm( —’“'“) : (5)
d IIl. CHOICE OF THE INTERACTION PARAMETERS

Here, d=|Zparici™ Zsmooth wall» v\_/here Zsmoothwalr:i(‘_fmm Choosingojj=1 and ;=1 for all interactions(i.e.,
+D/2). D denotes the separation between the solid wallspmonomer—monomer, monomer—wall, and wall—walve

i.e., the distance between the triangular layers on the left angst performed simulations aT=1 (L,=L,=11.11, F®
right side of the system. The potential,(d) qualitatively  =0.03). The velocity profilai,(z) is then obtained as a sta-
corresponds to an average potential arising from wall layergstical average of one particle velocities,

behind the first one in the case of an infinitely thick wall. The

N
use of an additional wall potential in order to prevent a pen- B _
etration of the atomistic walls is not new. It was, for ex- (2= Z‘l vxi oz —2) (Ap(2)). ©6)
ample, used in Ref. 25 in MD studies of the wall slip in thin o
films of hexadecane. Here, (- --) denotes thermal averagindy,is the total number

A shapshot of the simulation box is shown in Fig. 2 at a°f monomers K=2000 for all simulations reported here
temperature off =0.44[L,=L,=10.05,D=21. Periodic 2NdA=L.Ly the surface area of the wall. = _

As demonstrated in Fig. 3, the above choice of interac-
tion parameters leads to a large jump in the velocity profile
very close to the walls thus indicating that, on a microscopic
level, the velocity profile at the solid—liquid interface can be

Right Barrier different from the classical “nonslip{or stick assumptions
Wall . « : Pon
of hydrodynamics. The occurence of such a “partial slip
z effect has also been observed both in experinfémitdand in

molecular dynamics studies of soft sphetesf binary
mixture$2233%and of polymerg®-37-40

The partial slip effect can be quantified by introducing
FIG. 2. A snapshot of the simulation box Bt 0.44. Each wall is modeled two parameters, namely, the positiag,, where the slip-

as a layer of atoms arranged on a triangular lattice and an additional potef?@g€ is to be measured, and the slip length
tial [see Eq(5)] indicated by solid lines on the left and on the right side of

the system. The lateral system sizelis=L,=10.05. The system is peri- éux(z) _ u(zwall) @
odically repeated irx andy directions. The distance between triangular 9z :
lattice planes is chosen @=20. On each monomer a constant shear force 2= Zyall

acts pointing in thex direction: F¢=F®g, . To visualize the chain structure, ; ; ;
a continuous gray scaling is used for different chains. Note also that only 4 hus, the Sllp Iength gives the distance betwg‘m and the

chains(from the total of 200 chains, containing 2000 monomars shown intersection poinF with the-axis of the tangent line on,(2z)
here. atz=z,,, (see Fig. 3
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FIG. 4. Density profiles af=1, F®=0.03, andL,=L,=11.11 for two
z choices of the parameters of wall-monomer interaction: Compareq,fo

. ) . i . =1 ande,,=1 [which corresponds to the partial slip case, see Figthg
FIG. 3. Velocity profile as obtained from MD-simulations at a temperaturedensity close to the walls is more pronounced for the choice,gf=0.89

of T=1, F*=0.03, andL,~L,=11.11. Two choices of the parameters of ande,,= 2. As the volume and the particle number are constant, this leads
wall-monomer interactions are compared. A partial slip is observed for th% Wl".' htI. | density in the i P ¢ of the film. Th f.”' d black
case where the wall atonfa/) have the same size and the same interaction 0 a slightly lower density in the inner part of the tim. The fille ac
energy as the inner monomers). The dashed line extrapolates the velocity circles indicate the position of the solid walls.
profile at the wall ¢=z,,,) towards thez-axis and illustrates an estimation
of the slip lengths [see Eq(7), note that,,, is not identical to the plane of
the solid walls ¢= =+ 10) but has a distance of approximately one monomer
diameter with the lattdr Increasing the interaction energy and reducing the enhancement of the density peaks close to the solid wall is

preferred wall-monomer distance leads to a stick boundary condition. observed for the choice of a stronger wall-monomer attrac-
tion (e,m=2 and o,,y,~0.89). In other words, the system
better “wets” the wall. The slightly different densities at the

Now, for a Poiseuille flow satisfying the hydrodynamic film center are due to the fact that the particle number and

boundary condition given in Eq(7), the velocity profile the system volume are kept constant. A change of the density
readg close to the walls thus reflects itself in an opposite change of

the density at the film center.
(22— 22— 270e10) ®) A better understanding of how the particles “stick” to
s wall wall® the solid walls is obtained by looking at the pair distribution
function measured in a plane parallel to the wall,

—poF®
Uy(z)= 2

wherepo=p(z=0) is the density in the middle of the film,

F¢ is the driving force per particleys stands for the shear

viscosity, andD is the wall-to-wall separation. In deriving 1 o o .

Eq. (8), it is assumed that the flow is confined between two 9(z.1) Ap?(z) ;. Ar=rj)8(z=2)8(z=2) ). (9

identical walls, that the film center lies a=0 and that

Zyai>0 denotes the absolute distance of the walls from thg are 7 is the distance of the plane from the wa\, the

film center(i.e., the walls are placed atz,,;). Note that, as g rface area of the wall ang(z) the monomer density at

F®andp, are well known, the knowledge of the prefactor of o prefactor Wp?(z) ensures that lim... g(z,r)=1.

the quadratic term is sufficient to uniquely determine the e upper panel of Fig. 5 depictgz,r) for a plane at

shear viscosity. _ - the contact with the wall for both choices of the interaction
To improve the stick boundary condition, we favor the harameters. As seen from this panel, in the case of a strong

wall-monomer interaction compared to that between pary,onomer—wall attractione,,=2 and a,,,~0.89, leading

. . . . Wi . 1

tlcleisl/gf the same type. This was achieved by setting, o a stick boundary conditiorthe packing structure of the

=2 ""~0.89 ande,n=2. Figure 3 shows that this choice gystem in the very vicinity of the wall is strongly effected by

does indeed lead to a stick boundary condition. Qualitatively;nq periodic arrangement of the wall atoms. This favors a

this can be understood as follows: The wall-monomer intery,qre efficient “sticking” of the fluid atoms to the wall. For

action is favored in two ways. First, @&m<oww=0mm: &  the case ok,,=1 anda,,=1 (corresponding to the partial

monomer can come closer to a wall atom than to anothe§|ip situation, this effect is much weaker.

monomer inside the system. Second, the energy Cost {0 sepa- apart from the mentioned qualitative arguments, the ob-

rate a wall atom from an inner atomonomey is twice as  geryed decrease of the slip length in the case of the strong

large as the price one must pay to separate two particles o onomer—wall interaction can also be understood within a

the same type. This makes plausible why the monomergeqretical approach. Using the linear response theory, it was
“stick” much better to the solid walls compared to the casegnawn in Ref. 23 that the slip length scales as

where all interaction parameters were set to unity.
Figure 4 depicts the density profiles B&=1, F¢=0.03,

andL,=L,=11.11 for the two choices of the parameters of 5. _12_ (10)
the wall-monomer interaction. As seen from this figure, an S(Q) €ympc
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The simulation results we are going to discuss below all
correspond to the “stick” boundary condition, i.e., to the
choice ofo,,,=0.89 ande,,,= 2 (in units of o, and ey -

The parameters of the interaction among wall atoms, on the
other hand, remain unchanges,,,=1 ande,,,= 1.

F°=0.03 T=1 L =L =11.11

. < =112

IV. ON THERMOSTATING METHODS

. The external forcd=® does work on the system. There-
’ wall fore, in order to keep the system temperature at a predefined
0 . - . . value, the extra heat must be removed by some thermostating
mechanism. A way to achieve this objective is to keep the
walls at a constant temperature by coupling them to a heat
- - - bath. A steady state is then reached when the rate of energy
F°=0.03 T=1 L=L=11.11 transfer from the inner part of the system to the walls equals
o | <1 =112 ; that crez_ited by the _external f_orc_e. An advantage_ of this
method is that the fluid dynamics is purely Newtonian and
thus is not perturbed by a coupling of the particle velocities
to a heat bath. The drawback of the method is, however, that
the heat transfer towards the walls is driven by a temperature
gradient. As a consequence, a temperature profile is formed
across the film.
It is easy to see that the energy creation rate in a thin

a(z.r)

film center layer of thickness @ placed at z is given by
0 0 p > 3 1 5 AF°u,(2)p(2)dz, whereA is the surface area of the wall
r (note that the number of particles i@ z+dz] is Ap(z)dz).

2F62D4
. (11)

o _ Using this relation along with the energy transport and the
FIG. 5. Upper panel: The radial pair distribution functigfz,r), computed
and e,m=1 (solid line) the periodic structure of the wall does not change '€sulting temperature profile for the present situation is given
much the packing structure of the system in they plane. The situationis by (see for instance, Ref. 26
arrangement of monomers parallel to the wall is mainly induced by the P
lattice structure of the wall. The vertical dotted line indicates the minimum T(z)= Twant
192\ 7
occur at this distance, but at a smaller one corresponding to the minimuridere, T, is the temperature of thghermostatedwall, p is
position of the bond potential,,,~0.96]. Lower panel: Same as in the the (averagg system density) is the heat conductivityys is
the structure of the melt is amorphous for both choices of interaction pa:[he ViSCOSity of the fluid, an® is the dis_tance F’etween 30“9'
rameters. walls. As expected, the temperature is maximal at the film
We performed simulations at a temperature Tof 1

Here, p. is the density in the layer at contact with the wall while varyingF®. For each value oF€, the number of in-
within the same layer fog= \/qxz~l— qy2= 27l om [~peak po-  10° MD steps. The system size wag= Ly=11.11[leading
sition of S(q)]. to a density ofp(z=0)=0.795 at the film centérNote that,
to the inverse of the square af,,,. Note also thafp. in-  spatially constant. Despite this approximation, Fig. 6 shows
creases with a growing,,, (see Fig. 4 Furthermore it is that the temperature profiles obtained from the simulation
Fourier transform o§(z=z,,4,r) ] will exhibit a larger peak Figure 7 depicts the velocity profiles measured during
value for the wetting case. The variationmfandS(q) thus  the same set of simulations. As seen from this figure, devia-
decrease of the slip length. values of the shear force. However, even for the largest value

On the other hand, it is seen from the lower panel of Fig.of F® shown in this figure, the velocity profile around the
structure regardless of the monomer—wall interaction. This i®f these fits, we obtaimg for various values of the shear
an important point for the study of bulklike properties of the force.
restriction of the data analysis to a region around the filmat small F€, 7, is practically independent of the driving
center would then allow a determination of the transport coforce. It is seen from Fig. 8 that 58imge_ g 7s=<6. For the

within the first density layer in the vicinity of the solid wall. Fet,,,=1 momentum conservation equations of hydmdynarﬁidﬁ'e
strongly different in the case af,,,=0.89 ande,,=2 (dashed ling The ;14
(ol
position of the Lennard-Jones potentjhe first peak ofg(z,r) does not
upper panel, now for a layer in the film center. Obviously, far from the wall,
center ¢g=0) and minimal at the wall=D/2).

andS(q) is the structure factor measured in they)-plane  dependent runs was 10 and the duration of each run was

Equation(10) shows that the slip length is proportional in deriving Eq. (1), it is assumed thak, p, and 7 are
clear from the upper panel of Fig. 5 that alSdq) [i.e., the  can very well be described by E@L1).
amplifies the effect of an increase &),,, and enforces the tions from a quadratie-dependence are enhanced for larger
5 that, in the film center, the system exhibits an amorphousilm center e[ —5 5]) is well fitted by Eq.(8). As a result
model within the present nonequilibrium simulations. The  Results foryg are depicted in Fig. 8. First, as expected,
efficients with negligible wall effects. same model and at the same temperatdre 1) we read
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4 FIG. 8. Average system temperature versus the driving force per (@iem

monds. The solid line represents a best fit To- T, < F? obtained by
FIG. 6. A comparison of the temperature profiles resulting from MD simu- averaging Eq(11) over the whole film T,,,y=1). The asterisks show the
lations (symbolg with the theoretical prediction Eqll) (lines) for various shear viscosity obtained from fits to E@®) of the streaming velocity profile
values of F®. The fluid particles were not coupled with a heat bath but (see also Fig. )/
obeyed pure Newtonian dynamics. The only mechanism to regulate the sys-
tem temperature was the energy transfer towardqttiermostatedwalls.

Note that, in computing the local temperature,ate subtract the streaming e
velocity, u(z), from the instantaneous velocities of all particles in interval the sameF -fange, our result on suggests that the heat

[z.z+dz], i.e., we evaluateT(z)=([v;—u(z)]?) for a tagged particlé conductivity does not depend much on temperature. The in-

inside the interval z,z+dz]. sensitivity of the heat conductivity with respect to a tempera-
ture change has also been reported from experiments on
o-terphenyl mixture4?

from Fig. 1 in Ref. 15,5p5~7 at zero shear rate limit. This The huge temperature changes demonstrated in Fig. 6

result is quite reasonable as the density in Ref. 15 is slightlynay hide, to some extent, the variation Dfat smallerF*.

higher than in our cas¢p=0.84 compared top(z=0)  Therefore, we note that a temperature change of 2% was

=0.795. observed at a relative small driving force ©f=0.03. How-

However, at larger values &, significant change ims  ever, due to the dramatic change of the system dynamics
is observed. As to the average temperature, iB., Wwith temperature in the supercooled stdté’3'a tempera-
=f?’§,2T(z)dz/D, a quadratic dependence Bfiis observed ture change of 2% in this regime is not tolerable. A way out
as expected from Eq11). Hence, the rapid decrease of the of this situation would be the choice of a smaller shear force.
shear viscosity as a function Bf is partly a consequence of But, as seen from Fig. 7, already at the very high temperature
increasing temperature. of T=1 the amplitude of the velocity profile is very weak for

Using the results on the viscositgee Fig. § we obtain F®=0.01. The choice of such a sma& would therefore
from fits to Eq.(11) an estimation of the heat conductivity in lead to extremely small signal to noise ratios in the velocity
the melt: 3s\=<4.4 for all applied shear forces. As the aver- profile at low temperatures.
age system temperature varies fran¥ 1 to T~2.3 within It is therefore desirable to have a safer control of the

system temperature than provided by the energy exchange
with the walls. The simplest way, of course, would be to
r " ' apply the thermostating algorithm not only to the wall atoms,
but also to the polymer chains. Recalling the definition of the
temperature in a flowT=m((v —(v))?)/3kg, we see that a
direct thermostating of the inner part of the system requires
the knowledge of the velocity profile,(z)=(v,)(z) (note
that (v,)=(v,)=0).

This problem was solved in the following way: For each
run, the velocity profile was calculated during the preceding
equilibration periodwith “equilibration,” we mean the very
first simulation stage, during which the system reaches a
steady stafe Note that, as the equilibration is a necessary
part of a MD simulation, it does not require extra computa-
' tion power. The equilibration itself starts with(z)=0 and
0 _1'0. Y o0 5.0 10.0 improves this initial ‘.‘guess" by sampling _veIocities. That

2 this procedure does indeed lead to a spatially constant tem-
perature profile is demonstrated in Fig. 9. As shown in this

FIG. 7. Profiles of the streaming velocity,(z), for various values of the figure, T(Z) is constant across the film to a h|gh degree of
driving force and the corresponding fits to E8). As indicated in the figure, accuracy

only values withze [ — 5 5] are taken into account in the fit procedure. This ’ .
reduces the effects of the walls and thus leads to a better estimate of the |h€ reader may have noticed that, contrary to the data

shear viscosityy - presented so far, Fig. 9 shows results obtained at a higher

Y
<
%
%,
<,
<
<

<u,>(2)
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ever, a volume change is not feasible ifN& T-ensemble
simulation. The higher density in the film center is therefore
achieved by particle transport from the walls towards the
inner part. Obviously, such a transport does in general not set
in simultaneously at both walls but first develops at one of
the walls. Suppose that a particle current towards the film
center first sets in at the left wall. As a consequence, the
system density close to this wall decreases, while at the same
time it increases in the remaining part of the film approach-
ing the value consistent with the actual temperature. A phe-
nomenon analogous to the present one is the formation of
regions of extremely low densitholeg at low temperatures
observed in constant volume MD-simulations of the Btilk.
s _'5 6 5 20 It was repqrted in this rgference that the creati.on. of a hole is
Z accompanied by negative system pressure. Similarly, we ob-
serve that, as partial drying sets in, the component of the

FIG. 9. Temperaturt_e profile atas_hear force=6f0.05 forasy;tem size of pressure tensor normal to the interface becomes negative.
Ly=L,=10.05[leading to a density 0p(z=0)=0.99 at the film centdr

Note that the streaming velocity is subtracted from the particle velocities
when computing the local temperaturgz) =m(v;—(v;)(2))%3kg for a V. T-DEPENDENCE OF THE SHEAR VISCOSITY

tagged particle with z, e[z z+dz] (m=1, kg=1). All profiles coincide . . .
with horizontal lines indicating the corresponding imposed temperature To pre\{ent the phenomenon of partlal drylng described
Tou. in the previous section, we change the value of the lateral

system size td.,=L,=10.05. This value results from equi-
librium MD simulations of the model confined between per-
density in the film center opo=0.99 (which corresponds to  fectly smooth and purely repulsive walls at a normal pressure
the lateral system size df,=L,=10.05) and not apo  of Py,=1 in the supercooled state, where the system is
=0.795 Q_X=Ly=ll.ll). In fact, all simulations whose re- (almosi incompressib|é?v31At T=1 this leads th(ZZO)
sults we are going to discuss in the next sections have been 99. It is shown in the upper panel of Fig. 11 that the
performed using the smaller system size. The reason for thisroblem of partial drying is indeed avoided at this density.
choice is that fofT <0.9 a sort of phase separation developsFyrthermore, we observe that the average density at the film
if Ly=Ly=11.11. In particular, the density profile is no center does not change much with temperature. The system
longer symmetric but a region of low density occurs close tathus approaches the limit of an incompressible liquid. Note
one of the walls. that, compared to the previous lower density casee Fig.
This situation is depicted in Fig. 10 foF=0.8. This  4) now the presence of the walls is also “felt” farther inside
figure shows that out of 10 independent runs, in 4 cases e film. Furthermore, both the amplitude and the range of
sort of “partial drying” occurs at the left wall and in the the density oscillations grow at lowdt
remaining 6 runs at the right wall. At low temperatures, the  However, it is also seen from the lower panel of Fig. 11
system tries to contract in order to increase the density. Howthat, when restricted toe[—5 5], a quadratic function is a
good approximation for the velocity profile. Therefore, we
use the coefficient of?> obtained from a fit to Eq(8) to

o
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™
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o
o
T
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S

o
~
k —i
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50 compute the shear viscosity in the film center. The error in
shear viscosityA »s, is simply estimated from that of the

40 b ; corresponding fit coefficient. The accuracy of the fit mani-
fests itself in small relative errors in;.

From a preliminary study where the shear force is var-
~ 8.0 ied, we find that a shear force 6*=0.05 is necessary to
= runs 0,1,2,5,7,8 obtain a satisfactory signal to noise ratio not only at high, but

20} _ yd 5 also at low temperature@t a temperature of =0.35, for
: _ example, a shear force #°=0.01 leads to a noisy back-
‘0 funs 3, 4, 6, 9 L ground instead of a parabolic velocity profilelowever, it is
: ‘ generally known that, at high shear rates, the response of the
system is no longer linear and that the system properties
0.0 bams : . : . depend on the applied ford®:4%44=4€0f particular impor-
100 50 020 50 10.0 tance for our application is the possibility that the system

dynamics may be enhanced compared to the zero-shear case
FIG. 10. Density profiles for 10 independent runsTa0.8 for a system  (“shear thinning”). To check if a shear thinning is present at
size ofL,=L,=11.11[=p(z=0)=0.795 afT=1]. As the volume is kept  the chosen shear rate, we compare in Fig. 12 the mean square

constant, the system separates into two phases as the temperature is 'owefﬁgplacement of the chain’s center-of-mass in the direction
to this value: a low density region close to one of the walls and a high

density one in the other part of the film. For runs 0, 1, 2, 5, 7, and 8 thep?rpendiCUIar to .the flongs, , Optained from a simulation
density profile is shifted upwards by unity. with F€=0.05 with that resulting from a much smaller
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: F°=0.05 p(z=0)=0.99
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z e T
3.0F
= W — 2
= T=0.35 2 10
a F o
20F o
3 10°f
1.0F
: 10°F
F IR T N N (N T T N
0.8 . 10.0
z
O o e LA S B e B FIG. 12. Log-log plot of the mean square displacem@iSD) of the
0.08 chain’s center-of-mass in the direction perpendicular to the #pw(t), vs
’ time for two values of the applied shear forE€=0.05 (solid lines and
0.07 F€=0.01(long dashed lingsAt the high temperature of=1, the data are
practically identical for both choices d¥®. At lower temperatures, the
0.06 higher shear force leads to a slight acceleration of the dynamics. This effect
is, however, much weaker than the influence of the temperature on the
S 0.05 mobility of the system. The horizontal dashed line indicates the value cor-
= 0.04 responding to the chain’s radius of gyration. The factor 1/3 arises from the
’ Fit-Range fact that three independent spatial coordinates contribulﬁétowhereas
0.03 g3, (t) is obtained using only one independent spatial direction. The diffu-
sion coefficient of the system is obtained from the slopgﬁf(t)zRS/S. A
0.02 solid line indicates the short time behavior @f, determined by the free
(ballistic) motion: g:M:kBTtZ/Np (Np is the number of monomers per
0.01 chain. Note thatgs, (t) is computed in the film center, i.e., by averaging
0.00 over monomers witlz(t') e[ —5 5] for all t’ <t. In order to illustrate better

the gradual formation of a plateau at low temperatures, we also show a
curve corresponding t®=0.35 for the case dF¢=0.05.

FIG. 11. Upper panel: Density profile of inner particles as obtained from

MD-simulations atT=1 andT=0.35. Contrary to the case p{,=0.795,

where a relative wide range of a homogeneous inner region is obs@eed

Fig. 4), now oscillations also occur in the regiar: [ —5 5] (indicated by . . .

vertical solid lineg. The magnitude of these density variations is, however, 'egime where, in a narrow temperature interval, the shear

much smaller around=0. Lower panel: Velocity profile for two represen- viscosity increases by an appreciable amount.
tative temperaturestl (norma! liquid statg and Tf 0.4 _(supercooled We first compare our results on Viscosity to that reported
statg. Solid lines are results of fits to E¢B). The vertical lines mark the . . .
fit-range. Note also that, at lowdt the velocity profile already vanishes at in Ref. 47 f9r a similar polymer quel and at practically t_he
an approximate distance of two monomer diameters from the plane of th&ame densityof p=1). In the mentioned reference, the vis-
solid walls (z=*+10), whereas at higher temperatutg¢z) vanishes only  cosity increases by approximately a factor of 4 when varying
very close to the solid walls. the temperature frorfi=1 to T=0.4. For the sam@&-range,
we observe a change by approximately a factor of 8.4
[ 7s(T=0.4)=244.2§. The stronger increase of the viscos-
choice of F€=0.01. We first note that, at high temperatures,ity with temperature in our model can be ascribed to the
identical results are obtained both f6f=0.05 and forF®  presence of the attractive part of the LJ-potential which be-
=0.01. On the other hand, thslight) shear force induced comes more important at low temperatures. These forces are
acceleration of the dynamics observed at lower temperaturezbsent in Ref. 47 as the LJ-potential is cut offrgt 2%/,
is much weaker than the temperature induced change of thehere the potential has its minimum.
mobility. We will therefore neglect this weak shear thinning, Next, we focus on the low temperature bahavior of the
in a study of the temperature dependence of the transposystem. As the so-called mode coupling theory of the glass
coefficients of the system. transition(MCT) (Refs. 48—-5Dwas rather successful in de-
The temperature is varig@long an isochoric linefrom  scribing the low temperature dynamics of the present poly-
T=1 (normal liquid statg down to T=0.3 (supercooled mer modef”?°~*2we start an analysis of the shear viscosity
statg. Within this temperature range, the shear viscosity in4in the frame work of the MCT. Due to the idealized version
creases by over than two orders of magnitufftem »,  of the MCT, a tagged particle is surrounded by an effective
=28.96 atT=1 to »,=3292.6 atT=0.3). As we will see cage built by its neighbors. At high temperatures, the neigh-
below, the mode coupling critical temperature of the systenboring particles are mobile and the case is flexible so that the
is estimated to b&.=0.28+0.01. Thus, the lowest simu- tagged particle can leave the cage after a certain time. As the
lated temperature does indeed correspond to the supercooleamperature is gradually reduced, the cage becomes more
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and more rigid and it takes for the tagged particle longer r
before it can leave the cage of its neighbors. This behavior is -
nicely reflected in the time dependence of the mean square
displacements, where at low temperatures a plateau is 10°
formed for intermediate times indicating this growing period

of “arrest” (a comparison of the curves fdr=1, 0.5, 0.39,

and 0.35 in Fig. 12, for example, already shows this gradual &
formation of the plateguWithin this idealized picture, there L1
is a critical temperaturd . at which the cage completely
freezes and the tagged patrticle is arrested for all times. Fur-
thermore, close t@, the transport coefficients of the system
like the diffusion coefficient and the shear viscosity should ‘,..-‘
obey a power law, provided tha(T—T.)/T/<1. At low 10—
temperatures, we thus expect

7y(T)=c[T-Td 7. 12

MCT

IITH BN TITE BT
[ [IIIIIIL L1l

1

10°
T-T,

MD
— VFT

Here, y is the so-called critical exponent aieds a propor- 10
tionality constant. Fitting the simulation results gg(T) to
Eqg. (12) we have estimated the critical temperature of the
system. As Eq(12) is expected to hold at temperatures close
to T, the fit was restricted td'<0.5. This givesc=8.2 19
+0.5,y=1.62+0.1, andT.=0.28+0.01. Comparing this re-
sult toT.=0.45, the critical temperature of the same polymer &
model in the bulk at gslightly highey density ofp=1.0422"
we observe thal . strongly depends on the system density.

As shown in the upper panel of Fig. 13, Ed.2) de-
scribes well the low temperature part of the simulated data.
Furthermore, the deviation from the MCT-law observed for N T TP T T POTT T TTTI TR TOTTTT IO
the lowest simulated temperature £ 0.3 (which is quite %0 01 02 03 04 05 06 07 08 09
close toT.=0.28) is not unexpected at all. Such a deviation T'To
from the power law has been observed both in experithent

and in the(equilibrium) simulations of the same polymer F"E- 13-ﬂ:’PPﬁ’ panel: L‘?tg—\T'Ong'Ot gft;he mO'ECU'aL.dY”a”fg@) fe'l_

H H H : 7,52 f Sults on the shear Vviscosity Us— . an € corresponding mode-coupling
model (fflr various relaxation timgsin the bulk”*2and in |\~ [see Eq(12)]. In applying the MCT fit, only data points with
the film=" This is generally related to the fact that the ideal- < 5 are taken into account. The inset depicts a linear-log plot of the same

ized version of the MCT does not take into account thermallytiata vs 1T. Obviously, the data do not follow a straight line. Lower panel:

activated processes which allow a relaxation of the cage dthear viscositysymbolg and the corresponding VFT-fisee Eq(13)]. As

low temperatures Using the same simple picture of th‘%c,een here, the data is very well described by the fit at all simulated tempera-
) . . ures.

“cage,” one can say that the tagged particle is not com-

pletely arrested in the cage but can leave it after a sufficiently

=
a ®

T,=0.19 +0.005

L1 11l

long time.

It is generally known that the transport coefficients of Next we examine the validity of the Stokes—Einstein re-
fragile glass formers usually obey tHempirica) Vogel—- lation between the viscosity and the diffusion constant,
Fulcher—TammannVFT)-law before crossing over to an
Arrhenius behavior at much lower temperatutéas shown kgT
in the inset of the upper panel of Fig. 13, an Arrhenius-law mzl:COﬂSt- (14)

does not hold in the simulated temperature range. Such a

deviat.ion from an Arrhenius. behavior is also reported fromHere,DL is the diffusion coefficient in the direction perpen-

experiments on aqueous mixtures of Trehalose close to th§cyar to the flow and s a length characterizing an elemen-

glass transition? It is therefore interesting to see if the sheartary diffusive proces® The factor 4r corresponds to the

viscosity obeys a VFT-formula, assumption that, for the motion of a fluid particle within the
same fluid, the slip boundary condition hol@tbe “stick”

). (13 assumption would lead to a factor offp The diffusion co-
efficient of the system is obtained from the slope of the mean

Here, n5(°) is the shear viscosity at infinite temperatuBe, square displacement of the chain’s center-of-mggs(t), at

is a constant, andl, is the temperature, wheng, is expected late times, i.e., at times, for which gz, (t)= RS/S. As seen

to diverge. Fitting our data to Eq13) we obtainedzng(«) from Fig. 12, the motion of the chain’s center-of-mass is

=13.23+0.13,B=0.615-0.036, andT,=0.19+0.005. As  already diffusive in this limit 3, «2D, t). It must be men-

seen from the lower panel of Fig. 14, the quality of the fit istioned here that, ags is determined using the data in the

remarkable. film center, we also restrict the computation @f, (t) to

B
ns(T)= ns(w)exp(T_To
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[ ] FIG. 15. Off diagonal component of the pressure terBgy,z), as obtained
- E from MD simulations at two representative temperatufesl (high tem-
1.4 B ] perature liquid stajeand T=0.35 (supercooled stateThe thin lines corre-
“F . spond to a direct evaluation f,,(z) using the Irving—Kirkwood formula
— i ] [Eq. (17)] whereas the thickdotted—dashedline represents the data ob-
Q_' - . tained fromP,,(z) = [§F®p(z')dz’ at T=0.35[Eq. (16)]. Apparently, both
g"’ 1.2 [ 7] methods give identical results. FurthermoRg,(z) is practically indepen-
5 E dent of temperature. The slight deviations of fhe1 data from theT
r:’ i ] =0.35 one is most probably due to tti®y a factor of 19 smaller number of
1.0 - samples. The steps close to the walls reflect the oscillations of density pro-
[ ] file (see upper panel of Fig. 11
osf o
1 1 1 1 1 .
3.

= T simulations of SiQ (Ref. 55 and in experiments on fragile
T ' glass formersbelow the critical temperature of the corre-
sponding systerr 52

1.5 2

-
o

FIG. 14. Upper panel: Linear-log plot of the diffusion constdnt,, vs T

—Ty. D, is obtained from the slope of the mean square displacements of
chain’s center-of-mass at late timesee Flg 12 Lower panel: The ratid VI. LOCAL VISCOSITY
=T/(47D, ns) (connected symbols/s inverse temperature. The irregular
changes of are most likely due to statistical uncertainity in the determina-

: gl For a fluid moving between flat parallel walls the knowl-
tion of the diffusion constant.

edge of the off-diagonal component of the pressure tensor,
P.,(z), on the one hand and that of the velocity profile,

this region.gs , (t) is thus computed by averaging only over u,(z), on the other hand allows the calculation of theal

e apcity11,20,63
those monomers which have remained in the regionV'SCOS'ty’
ze[—55] for all timest’<t. . Py2(2)

Results orD, are depicted in the upper panel of Fig. 14.  7(2)=— I'mFeHoW' (15

As seen from this panel) , can be described by a VFT-fit at

low temperatures using the same valueTgt=0.19 as ob- Figure 15 depict®,,(z) for two representative temperatures
tained from fits to the shear viscosity. It is also seen from thi®f T=1 (high temperature liquid statend T=0.35 (super-
figure that, unlike the viscosity which follows a VFT-law for cooled state As seen from this figureR,(z) is rather in-

all studied temperatures, only the low temperature part of th8€nsitive to a change @t This is directly related to the fact
diffusion constant exhibits a VFT-behavior. A similar devia- that also the density profiles hardly change with temperature
tion of the diffusion coefficient from a VFT-law at high tem- (Se€ the upper panel of Fig. )11in fact, for a fluid flow
peratures has also been observed in the equilibrium studid¥tween planar walls, it follows from the momentum conser-
of the present model in the buf® The knowledge oD, (T)  Vation equation thai#Py,(z)/dz=F°p(z) (see, for example,
and 74(T) can now be used for a check of Ed4). The Ref. 20. Taking into account that shear stress P,,)
lower panel of Fig. 14 shows=kgT/(47D, 5s) versus in- vgnishes in the film centez&0), a simple integration then
verse temperature. First, we note that the resulting value d!Ves

I~1.2 is quite reasonable as it indicates that an elementary

diffusive process approximately corresponds to an average PxA2)= f
displacement of a monomer diameter. Furthermdras
rather constant with respect to a variation of temperature. However, a more general expression for computing
However, a systematic decrease seems to set in for [dwer P,,(z) in a planar system is the Irving—Kirkwood formula
In fact, a decrease dfwith 1/T has been observed in MD for the pressure tensét*%4

Fép(z')dz’. (16)
0
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P(2)=p(2)kgT1 0015
1N 1 i —— Fit Range [-9 9]
il ., -z Z—zZ | e Fit Range [-10 10]
oA E [ U (r”)m®(z_)®<z_ : ; < Linear Regression
1#] ij ij ij i o
0.005 H7
17 3
In Eq. (17) O(x) denotes the Heaviside step function 1‘2 """""""""""""""""""""
[®(x)=0 if x<0 and 1 forx>0], U is the pair potential, 3
and U’ its derivative with respect to interparticle distance, 0008 !
rij=r;—ri(rij=|r;;|) and1 stands for the 3 unit matrix. |
Figure 15 compareB,,(z) obtained by an evaluation of i
the Irving—Kirkwood formula with that of Eq(16). Obvi- o0t L L o s
ously, both approachs give identical results. However, as the -0 8 6 -4 -2 0 2 4 6 8 10
velocity profile depends on temperature, a variation of the z
local viscosity profile withT is be expected.
To apply Eq.(15) for a computation of the local viscos-
ity, the velocity gradient must first be determined. For this o0t —— Fit Range [-8 8]
purpose, we have used two different approaches. First, the | | 6 R Fit Range [-9 9]
velocity profile is fitted to a sixth order symmetric polyno- ¢ Linear Regression
mial, N 0oos |
e
U(z)=ug+AZ+BZ+C2. (18 = R
The resulting coefficients, B, andC are then used to com- 3 00005 | d
pute
duy(z)/9z=2Az+4BZ+6C2. (19 T=0.41
Note that the coefficients resulting from a fit to E§8) do in 0omsE o T
general depend on the fit range. However, it is clear that we -10 8 6 4 2 0 2 4 6 8 10

are interested in taking into account the largest possible data z

set extending towards the region where the velocity profile:i. 16. Upper panel: Velocity gradient(z) = du,(2)/z, atT=1 (high
(almos) vanishes. As the effective position of the walls temperature liquid stateLines correspond to the result obtained by first

(where the velocity profile vanishes not precisely known,
we examine two possible choices to see if the results on th
velocity gradient depend on the particular fit range.

As an alternative, we have also determingd{z) by

fitting the velocity profile to a sixth order symmetric polynomial,(z)
5ot AZ+BZ'+CZ, and then using the coefficienfs B, andC to com-

pute du(z)/dz=2Az+4BZ+6CZ°. In applying the polynomial fit to
u,(z), the fit range is varied. As seen from this panel, the resultiduz)

does not depend much on the fit range. Furthermore, the velocity gradient is

computing the slope of the line which best fits a small num-also obtained in a different walgquares For a given data poing, uy(2) is

ber of data points around the desired point, zayarying the
number of neighboring points taken into account in the linea
regression procedure, we find that a set of 5 pajtits data
point z and two points on each side of ields satisfactory
results onu,(z). Figure 16 depicts results on the velocity
gradient,u,(z), for two temperatures of =1 (upper panel
and T=0.41 (lower pane). It is seen from this figure that
u,(z) does not depend much on the applied method. How

f

computed as the slope of a line which best fitsij¢z). Here, 5 data points
centering at are taken into account for the linear regression. Similar results
are also obtained for 7 points. The vertical dashed lines indicate the effective
position of the wall, where the velocity gradient vanishes and thus the local
viscosity, 7(z) = — Py2)/uy(2), is expected to diverge,,(T=1)=9.75

(see also Fig. 17 Lower panel: Same as in the upper panel, but for a lower
temperature off =0.41 (supercooled stateNow, z,,,(T=0.41)=8.25.

ever, larger numerical uncertainty is observed, when the veFig. 15. Note that the linear approximation f&¥, is not
locity gradient is computed applying the local linear regres-applied outside the regiane [ —5 5] but we use simulation

sion method. This can have large impactgf) for u,(z) is
a small quantity and appears in the denominator of(ES).
To avoid this problem, we us,(z) computed via Eqs.18)
and(19).

A further source of error in computing(z) is the fact
that not onlydu,(z)/dz but alsoP,,(z) vanishes at the film
center. As a consequence, a small statistical errd®,inis
directly amplified by ahuge factor of 1U,(z) thus leading
to large errors inp(z). This problem is fully avoided when
the use of Eq(19) [which guarantees that (z) >z whenz
—0] is combined with a linear approximation ,,(z) in
the film center, i.e., whe®,,=F¢pyz for ze[ -5 5], say.
The validity of such an approximation is easily seen from

results on this quantity.

Figure 17 shows results on the reduced local viscosity
1(z)/ 5 for two characteristic temperatures & 1 (normal
liquid state, upper paneland T=0.41 (supercooled state,
lower panel. Each panel contains two curves corresponding
to different choices of the range used to fit the data to Eq.
(18). Obviously, the result om(z) does not depend much on
the chosen fit range. In particular, for a wide region around
the film center, no dependence on the applied fit range is
seen. However, a slight variation of the result with the fit
range is observed far= 1. We will take the average of these
both curves for further investigation.

The increase of the viscosity close to the walls can be

Downloaded 27 Sep 2002 to 193.49.39.50. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 117, No. 13, 1 October 2002 Shear viscosity of a supercooled polymer melt 6347

As to the variation ofn(z) at the film center, similar
behavior also is observed in MD simulations of a WCA
system® Note that Eq(15) represents a local approximation
to a more general formula which also takes into account
Tt nonlocal  effects, P,,(z)=/ n(z;z—z')dz'/u’(z").11°
Therefore, therather unexpectedvariations of(z) at the
film center are probably related to a violation of this local
approximatiorf®

Recall thaty, is computed from fits to Eq8) within the
rangeze[ —55]. It is therefore interesting to see if some

——— Fit Range [-9 9]
,,,,,,,,,,,,,,,,,,, Fit Range [-10 10]

oL TR

NS T e agreement can be found betwegpand the average af(z)

. . over the same interval. Fof=1 we obtain [2 7(z,T
-5 ; 5 ° =1)dz/10=31.36 which lies about 8% above the value of
ns(T=1)=28.96. The agreement is slightly better at the

10° . . . . lower temperature of T=0.41, where [>.7(zT

=0.41)d/10=230.1 thus being only 5% above the value of
7ns(T=0.41)=218.33. Thus, using the above approach, we
are able to determinegy(z) within a relative accuracy of
10%.

Note that, compared t@=1, at T=0.41 the region
wheren(z) starts to rise is shifted towards the film center by
approximately 1.5 monomer diameter. Motivated by this ob-
servation, we define an effective position of the wall,,
as the plane wherg(z) diverges. This is in fact identical to
the plane(close to the wa)lwhere the velocity gradient van-
ishes(see Fig. 16 Using this criterion, we obtain from Fig.

10 16, 2, ~9.75 forT=1 andz,,~8.25 forT=0.41.

Thus, the effective position of the wall moves towards
FIG. 17. Upper panel: Reduced local viscosiffz)/ 7, computed using the film center asT is lowered. Note that the fluid—wall
Eq.(15) atT=1 (high temperature liquid stateDifferent lines correspond  attraction becomes more important at lower temperatures.
to different fit ranges used for a computation of the velocity gradishich o otore our result is consistent with the experimental ob-
serves as input fom(z)=—P,,/uy(z)] via fits to Eq.(18). In the film . ? . .
center, i.e., foze[—5 5], the off-diagonal component of the pressure ten- S€rvation that the hydrodynamic thickness of the system de-
sor has been approximated By,(z)=F®pyz. A look at Fig. 15 shows that  creases when the fluid—wall attraction is increa®ed.
this approximation is practically exact. The vertical lines mark the effective Note also that, in the Whole-range between the film
position Qf the walls, estimated fromj (z) =0 (§ee Fig. 16 The hprizontal center and the wallsy(z)/ s varies approximately within
dashed line marks(2)/7;=1. Note thalu,(2) is a smooth function for all the same range for both depicted temperatures. Recalling that
z The only source of statistical noise is thBg,. As this quantity is ap- ; ) . . ]
proximated by a straight line fare [—5 5], the statistical noise can only the sharp rise im(z) sets in at different-values, it is there-
occur beyond this region. Lower panel: Same as in the upper panel but fdiore interesting to look at the behavior g{z)/ r¢ not as a
T=0.41. function of the distance from the film center, but versus the
distance from an effective wall placed &}, (T). For this
purpose we first symmetrize the curves #z)/ »s and then

rationalized as follows: Close to the wall, the particles areP!0t them versug—z,,(T).

much stronger attracted and are at least partially trapped in  Figure 18 showsn(z,T)/7¢(T) versusz—2z,,(T) for

the wall potential. Obviously, a stronger lateral force must bel =1 a@nd T=0.41. As seen from this figure, despite the

applied in order to “shear” a fluid layer in contact with such strong variation of the shear viscosity with temperature

a “trapped” layer compared to the case where both layers arkcompare 75(T=0.41)=218.33 to 7(T=1)=28.9¢, the

mobile. In other words, the proportionality constant betweerf€duced and shifted curves approximately superimpose for

the stress tensor and the velocity gradient increases when tR@th temperatures. The temperature dependence of the local

wall is approachedisee Eq(15)]. ylscosny thus seems tq sepgrate frc_;m its spatial dependence,
The observed increase of the local viscosity in the vicinJf the spatial variable is defined with respect to a slightly

ity of the wall has also been reported from the MD simula-t€mperature dependent reference framgy(T).

tions of oligomer fluid$® Note, however, that in the men-

tioned reference, only two distinct layers are investigated: 11l CONCLUSION

central layer and a layer close to the wall, whereas we con-

sider the whole spatial dependence of the shear viscosity. Results of nonequilibrium molecular dynamics simula-

Our approach is in fact identical to that in Ref. 20. There, antions on a nonentangled sheared polymer melt confined be-

increase in shear viscosity close to a solid wall is reported fotween walls are presented. The outer layers of the solid walls

a system with WCA interaction at an average densitypof have been modeled as a triangular lattice with harmonic

=0.8362 and average temperatureTef 0.97°%’ springs. For the interaction between the wall and the fluid

~ Fit Range [-8 8]
- Fit Range [-9 9]
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L B B B B H A R temperature of the system at a densityp3£0.99 is thus
reduced local viscosity A determined to beT,=0.28+0.01, whereas the VFT-

: : temperature is found to bEy=0.19+0.005. For the lowest
simulated temperatures, which are quite clos& tpwe ob-
serve deviations from the MCT-power law. These deviations
are expected for the idealized version of the MCT does not
take into account the thermally activated processes, which
become dominant at low temperatures. Again, similar obser-
vations are made on the experimental sitle.

We also determine the diffusion coefficiem, , using
the mean square displacements of the chain’s center-of-mass
in direction perpendicular to the flow. It is then shown that
the quantityT/(D, ns) is practically constant at high tem-
peratureqStokes—Einstein relatignwhereas the beginning
7-7 of a temperature dependence is observed atTloWwhe cor-
wall responding length scale=T/(4wD, 7.) is found to be of
FIG. 18. Local viscosityz;(z,T), in units of the shear viscositys(T), for order _Of a mpnomer Slz€, WhICh. IS qUIte reasonablé @s
T=1 (circles and T=0.41 (diamond$ vs the distance from the effective associated with an elementary diffusive process.
position of the wall, i.e., v&—z,,(T). Note that the shear viscosities at An analysis of the local viscosity is the subject of the
these two temperatures differ by approximately one order of magnituddast part of this report. An increase of the local viscosity is
[7(T=1)=28.96 compared 0 7(T=0.41)=218.33]. Despite this ghseryed when approaching the walls. In addition to that,
strong variation with temperature, the reduced local viscosities superimpose. . . . .
using the sharp rise aof(z), we estimatez,,;, the effective
position of the wall. We find that, as temperature decreases,
Z,a1 Moves towards the inner part of the film thus leading to

atoms (monomer$ a Lennard-Jones potential is used. We ) N
study the influence of the parameters of the interaction be decrease of the effectivier hydrodynamig width of the

tween wall atoms and monomers on the boundary conditiongYSteM- The significance @}, (T) is demonstrated showing

A large slip is observed when the wall and fluid atoms arahat the(symmetrizedcurves ofy(2)/ 7 at various tempera-

sindistinguishable,” i.e., if e;=1 and o;;=1 for [ij tures superimpose if they are compared with respect to the
e{mm,wm,wm}],1wheréas th”e choice GanI]J=2€mm along corresponding wall position, i.e., if the data are plottedzvs
with o,n=0.8%,,, leads to a stick boundary condition. It is ~Zya(T). This implies that the spatial and temperature de-

also shown that this observation is consistent with theoreticdf€"'dencies of the local viscosity separate if, instead: of
predictions?®® =0, the (temperature dependgneference plang,(T) is

It is also observed that a temperature profile forms wherﬂjsed'
the inner part of the system is not directly thermostated but is
only allowed to exchange energy witthermostatedwalls. ACKNOWLEDGMENTS
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