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Molecular dynamics results on the pressure tensor of polymer films
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Polymeric thin films of various thicknesses, confined between two repulsive walls, have been
studied by molecular dynamics simulations. Using the anisotropy of the perpendRy{aj, and
parallel component$+(z), of the pressure tensor the surface tension of the system is calculated for
a wide range of temperature and for various film thicknesses. Three methods of determining the
pressure tensor are compared: the method of Irving and Kirkwikod an approximation thereof
(IK1), and the method of Harasin&l). The IK- and the H-methods differ in the expression for
P+(z) (zdenotes the distance from the wabut yield the same formula for the normal component
Pn(2). When evaluated by molecular dynamics Monte Carlg-simulationsPy(z) is constant, as
required by mechanical stability. Contrary to that, the IK1-method leads to strong oscillations of
Pn(2). However, all methods give the same expression for the total pressure when integrated over
the whole system, and thus the same surface tension, whereas the so-called surface ofiension,
depends on the applied method. The difference is small for the IK- and H-methods, while the
IK1-method leads to values that are in conflict with the interpretatian, @k the effective position

of the interface. ©2000 American Institute of Physids$§0021-9606)0)51334-§

I. INTRODUCTION P(r)=PK(r)+PY(r). 2

Th? aim of 'statlstlca'l mechanics is to relate MAacroscoPIGyq kinetic part may be expressed by a generalization of the
guantities to microscopic degrees of freedom. An example

. S o . ideal-gas contribution
for this connection is the virial equation of the pressure. Con- g '

sider a system of volum¥ andM particles which interact by
a pair potentiald. Let the distance between two particles be

denotedR(R=|R|). The pressure can then be written as a A
sum of two parts, wherep(r) is the density at and1 a 3X 3 unit matrix.

On the other hand, there seems to be no unique expres-
B 1 dU(R) ) o sion for PY(r).24"The origin of this problem may be ex-
pP=KkgTp— gf RW” (R)A°R, plained as follows: The pressure tensor can be defined by the
infinitesimal forcedF acting across an infinitesimal surface
a kinetic(ideal-gas partkgTp (p=M/V), which arises from dA which is located at:
the average kinetic energy and the momentum transfer of the
particles on the container walls, and a potential part which  dF(r)=—dA-P(r). (4)
accounts for the intermolecular forces. Two particles experi-
ence an interaction force RU’(R)/R. When weighing the If a particle moves acrosslA, the resulting momentum
corresponding virial,—RU’(R), with the average density, transfer contributes t®(r). Since the momentum is asso-
p@(R), of a particle at distanc® from another one and ciated with the particle position, it is a single particle prop-
integrating over all possible separations, one obtains the corrty which may be well localized in spa¢gee however Ref.
tribution of the potential to the pressure. There are differenil1). The ambiguity in the calculation &(r) arises from the
ways to derive Eq(l) (see Refs. 1-3, for instangéut none interaction between two particles: Which particles should
of these routes can readily be generalized to inhomogeneousntribute to the force at? Somehow the nonlocal two-
systems. They all use the isotropy of space somewhere in thaarticle force,—U’(R), has to be reduced to a local force
derivation and take as a scalar. dF(r).” This ambiguity was already pointed out in the semi-
In inhomogeneous systems, however, the pressure inal work of Irving and Kirkwood, and they required that “all
general depends on the spatial direction and on the positiondefinitions must have this in common—that the stress be-
where it is determined: It is a tensB(r). Nonetheless, the tween a pair of molecules be concentrated near the line of
pressure tensor can still be split into a kinetic pRIt, and a  centers. When averaging over a domain large compared with
potential partPY: the range of intermolecular force, these differences are

PK(r)=kgTp(r)1, )
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o 17 p(z)(r;r’)=<2 5(ri—f)5(fj‘r’)>- ©
1#]

T4

Using Eq.(6) one obtains from5)

. PU(r)=—%<E @U’(rij)folda 5(I’i—r+al’ij)>,

i #] ij

g L J (7)

® 1 LS wherer; =rj —r; (r;=|ry]).
FIG. 1. Schematic illustration of the different contributionsP¢(r) which Equ,at|0_n (5) can t?e mterpre_ted. as fOllOWS.: .The t,erm
are taken into account by Irving and Kirkwodtk method and by Ha- — RRU’/R is a tensorial generalization of the virialRU
rasima(H method. Let dA be an infinitesimal surface situated at position ~ of the integrand in Eq(1). It accounts for the forcRU'/R
[panel(@)]. In the IK method all particles whose center line passes throughthat a particle at; experiences from another particle rat

dA contribute to the force felt across the surfdpanel(b)], whereas Ha- . . - .
rasima assumes that the interaction between the particles inside a prisn(g_ rp—rs). The virial has to be multiplied by the probabil-

with basedA and those on the side to whid is pointing causes the force ity Of finding two particles ar; andr,. The probability is
at r [panel (0)]. Panel(b) shows two possible contributions in the IK proportional to the density®)(r;;r,) which depends ex-
method. If R=r,—r,, the position vectors of the particles can also be plicitly on both particle positions for inhomogeneous sys-

expressed as =1 — aR andr,=r+(1-a)R(0<a<1) [see Eq(S)]. The  tomq Therefore, different values pf(r;;r,) are obtained
interaction between; andr is also taken into account in the H method, but

not that betweem, andr,. On the other hand, particles &f andr, (=r3 for fixed R when shifting particle 1 or 2 to positian where
+R) contribute in Harasima’s approach, whereas they do not in the IKthe pressure shall be determined, i.e., fg=r (a«=0) or
method. r,=r (a=1) (see Fig. 1L The integral overx takes all of
these contributions into account. The outer integral finally
o o sums over the possible vectoRs which pass througldA.

washed out, and the _amblguny remaining in the MAaCroscopigquationg5) and(7) are general and apply to systems of any
stress tensaRef. 12 is of negligible order”(footnote on p.  ghane if the particles interact by a pair potential. In the fol-
829 of Ref. 4. lowing we are interested in thigpolymen films confined

In the present paper, we apply common ways 10 calCupgqyeen two impenetrable walls. For systems with planar
latePY(r) to a model of a glassy polymer film and determine eometry the pressure tensét, depends only on the dis-
the surface tension as a function of temperature. This Wor?ance, 2 from the wall>® Furthermore, the nondiagonal
serves as a preparation for simulations on the sluggish rela)&'omponents oP vanish in thermal equilibrium and it can be
ation of the film in the supercooled stdfeThe paper is written as(see Sec. 11D
organized as follows: In Sec. Il we discuss the theoretical
background of various approachesRd(r). Section IIl pre- _
sents details of the model and simulation technique, and Sec. P2)=(eect &8)Pr(2)+eePn(2), ®
IV compiles the results. The final section contains our conWhere e, e, e, are orthogonal unit vectors and the lateral,

clusions. P+(z), and normal componeniy(z), of P(z) are given by
Il. THEORETICAL BACKGROUND P2A2)=Pn(2)  and Py(2)=Py,(2)=P1(2). ©)
A. The methods of Irving and Kirkwood and of Using
Harasima
. . . 1 Z—Z; Zj —Z
Irving and Kirkwood gave a definition of th&" tensor da 8(z— azjj—z)= m@ - G -
0 ij ij ij

by starting from a statistical mechanical derivation of the
equations of hydrodynamics and by making a special choicand averaging Eq(7) over the tangential coordinates one
for the particles that contribute to the local force: Only thoseobtaind®1*

pairs of particles should give rise td-(r) for which the line

connecting their centers of mass passes through the infini- y 1 y
tesimal surfacalA (see Fig. 12 With this choice they ob- P (2)= Kf f P=(r)dx dy
tained the following expression for the potential part of the
pressure tensor 1 Hifij ., 1
2A<gj Fij ( ”)|Zij|
1(RR 1
PU(r):_EJ?U,(R) f dap(z)[r—aR;r Z_Zi Z.—Z
0 X0 —)@(J—) : (10)
Zij Zij
+(1—a)R])d3R, (5  whereA is the area of a plane in tangential direction. With

Eqg. (10) this leads to the followingfull) expressions for the
whereRR is a dyadic,U’(R)=dU/dR, andp®(r;r’) de- normal and tangential components of the pressure tensor for
notes the two-particle density planar systemglK method
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1K/ o\ — +
PN () =p(2)ksT 2= [ AP - Pr(2dz an
Y J-D/r2

1 > |Zij|U’ z—-z o zj—z
C2A\E (rij) "z; | | z; //*  depends on the different choices made to determtheThis
was already pointed out by Harasima.
11 In Sec. IV we want to show for the polymer model con-
1 2y U sidered that the differences zg obtained from the IK and H
PK(2)=p(2)keT— —( S ity Vi) expressions are small compared to the sizef a partlcle,
T 4AN\F 1) |z but not negligible. The ambiguous naturezgfvas discussed
in detail in Ref. 2, 10. In Ref. 10 a liquid—vapor interface is
(12) studied. Since there are no density oscillations near a free
’ surface, which are characteristic of liquid—wall interfatés,
we expect the difference between the IK and H expressions
for P1(z) to be more pronounced for the thin films studied

X6

72— 7 ZJ—Z
- @ R
Zij Zij

wherep(z) denotes the density ataveraged over tangential
coordinatesx andy. These equations are valid only in ther-
mal equilibrium (for an extension to nonequilibrium situa-
tions see Refs. 8 and.9

In addition to the IK expressions the formulas of Ha-
rasima are often used in the literatdreThey are obtained B. The method of planes
from a different choice of the contributing interactiofsee
Fig. 1): Harasima considered a prisma whose baseAisThe
forcedF(r) is thought to result from all interactions between
particles in the prisma and those on the sidel Afto which
the vectordA points. This also includes particles whose cen-
ter line does not pass througlA. Harasima’s choice corre-
sponds to a contour which goes parallel to the waillsthe
planar surfacefrom r, to (X,,y,,Z;) and then along the
normal tor,.%°Using this convention he obtained the same

Todd, Evans, and Dai$ have introduced a variant of
the original IK derivation to determine the pressure tensor
(termed “method of planes/’'which avoids the ambiguity of
defining a contour to relate two interacting particles. The
problem is, however, not circumvented because one has to
choose a gauge for both the pressure tensor and the momen-
tum density? The derivation starts from the continuity equa-
tions for the mass and momentum and leads to

results for the normal component as Irving and Kirkwood U 1 [ M
[Eq. (1D)], Ped2)= 54 | 2 Faisorzi=2) (18)

PN(2)=PR(2), (13)
but a different expression for the lateral component of the :ﬂ< .2;&, Faij(@(zi—2)0(z-7)
pressure tensor

1 X5 +yi —®(z-—z)®(z—z<))> (19)
PH@)=p(2)ke T~ ﬂ<2] o U'(ru>5<zi—z>>. ! |
ij
(14 for the potential part of the pressure tensor and to
M

Thus, Fheiangenttial componenP+, of the pressure tensor is PEZ(Z): l 2 PaiPzi 8(z—7) (20)
not uniquely defined. Consequently, thieessure anisotropy A= m

Pn— P+, is ambiguous. This ambiguity is extensively dis- A _
cussed in the literaturs’-1014 for the kinetic part ¢=X,y,z), whereM denotes the number

However, the integral ovez of Eq. (12) is identical to of particles andnis the mass of a particle. In EQL8) sgng)

that of Eq.(14). This implies that both the IK and the H 1S the sign function(=1 if x>0 and —1 for X<O)’.§mdF“‘
. . .. is the @« component of the force exerted on particlby all
methods yield the same results for any physical quantity

which does not depend on the local profile of the pressurt(a)ther particles. Furthermord)(x) denotes the Heaviside
. Step function ang,; is the « component of the momentum

tensor. In particular, they lead to the same values of th%f articlei. Using the identit

surface tensiory (Kirkwood—Buff formule) P ' 9 Y

+D/2 | |®(Z_Zi)(zj_z)__ —2)O(z—

27=J _[Pn(2)=Pr(2)]dz (15) AP 7z, 2, | 2P0z

—0(z—2)0(z-7z)],

1 r2—3z2
~71A < ; %U '(rij)> : (16)  one can verify that the diagonal components of the Et@.
: 4 and(20) yield the IK expression for the normal press{is).

The factor 2 arises from the existence of two walls at(11)]. Since Eq.(18) contains a single sum instead of the
z=—D/2 andz=D/2 in our simulationD being the distance double sum of Eq(11), it is computationally more conve-
from one wall to the othefi.e., the film thickness However,  nient. Therefore, we used Eq4.8) and(20) to calculate the
moments ofPy— P+, such as the so-called “surface of ten- normal pressure. However, these equations are not sufficient
sion” zg, i.e., the position where the surface tension acts, for determining the surface tensign as they do not contain
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the diagonal components of the pressure tensor parallel to the sp,, IPyy P,

walls, i.e., P, and P,,. On the other hand, they provide a o St et e,=0
. . y 9z
method for the calculation of the viscosfty.
and
C. An approximate formula: IK1 method Pyd1)=Pyy(r). (24)

Since 9P,,/dx=0, JP,,/dy=0 on the one hand, anH,,

In the literature(see Refs. 16 and 17, for instandbere >
is still another formula for the pressure tensor, which is a_ Pyy On the other hand, the lateral components can be func-

kind of a “tensorized” version of the Harasima expression1ons 0f z only. Furthermore, sinceP,,/9z=0, the normal
(14) (called “IK1” in Ref. 8) component of the pressure tensor is !ndependent of the dis-
tance from the surfaces and must be identical to the external
P|K1(2)=p(2)kBTi—i<2 FijTij U’(rij)ﬁ(zi—z)>. pressurePy o This gives
2AN\T7) T Pn(Z) =P, =Py ex=cCONSt
(21

and
Todd, Evans, and Daiisioticed that Eq(21) is equivalent _ _
to a zeroth-order approximation of tf&ull) 1K expression P1(2)=Pud(2)=Py(2), (25)
and that it leads to spurious unphysical oscillation$Pgf. i.e., Eg.(9). The argument presented is not new. It essen-
They thus concluded that this formula should not be used fotially follows the discussion of Ref. &see p. 44 of Ref. 2
inhomogeneous fluids. In the same reference, they gave \&/e repeated it here to stress the erroneous character of ex-
physical interpretation of the IK1 approximation knspace pression21). In Sec. IV we will see that only the IKor H-)
[see Eq(24) in Ref. 8. One can also find a real-space inter- formula (11) satisfies condition25). The independence of
pretation in the following way. If one replaces the integral Eg. (11) on z was already proved analytically in the work of
over a in Eq. (7) by the value of the integrand at the lower Harasima(see p. 224 of Ref.)5 This important property

bounda=0, one obtains helps us to set the pressure in the simulations for a given
wall separation and temperature.
U 1 FijTij
PUn=—2{ 2 ——U'(rari—n)), (22
2\ 7 nij .

which gives the potential part of the IK1 expressil) [ll. SIMULATION OF POLYMERIC FILMS
after averaging over the tangential coordinates. A. Model

Thus, the IK1 method corresponds to the assumption
that the two-particle density‘®)(r;;r,) is unchanged upon We study a Lennard-Jones model for a polymer tfielt

translation of both arguments a|ong the |irﬁe:r2—rl embedded between two impenetrable walls. All simulation
which connects the points 1 and 2. However, the breaking ofesults are given in Lennard-Jons)) units. Two potentials
translational invariance is one of the basic characteristics ofre used for the interaction between particles. The first one is
inhomogeneous Systems_ The more the System is inhomogé_truncated and shifted LJ-pOtentiaI which acts between all
neous, the more the IK1 expressi@il) for Py(z) should pair of particles regardless of whether they are connected or
become inaccurate. On the other hand, integration aver Not,
yields the same result as the IK and H approaches. Therefore,
the IK1 method leads to the same surface tensidout to a ULJ_tS(r)z[
different value forzg compared to the other two methods.

In Sec. IV we show that the IK1 result fag is too large  where
to allow for an interpretation dfg as the effective position of
the interface, i.e., gs the dist;nce of closest a?pproach of a ULy(r) =4el(r/o) = (r/o)°]
particle to the wall. Furthermore, E21) leads to strong andr.=2x2Y6. The connectivity between adjacent mono-
oscillations ofPy, in contrast to the condition of mechanical mers of a chain is ensured by a FENE-poteftial
stability which requires a constant profile f&y (see Sec.

Up(r)—Up(re) if r<rg,
0 otherwise,

k 2
”D) U,:ENE(I’)=—§RS|I’1 1- R_O y
. 3 . wherek=230 is the strength factor ariRh= 1.5 the maximum
D. Mechanical stability requires  Py=const allowed length of a bond. The wall potential was chosen as
In equilibrium, mechanical stability requires that the gra- o\ 9
dient of the pressure tensor vanishes Uw(z)= ( E) , (26)
V-P=0, (23

wherez=|Zpaicie™ Zwail (Zwan= *D/2). This corresponds to

where 0 denotes the null vector. For a system with planaran infinitely thick wall made of infinitely small particles

symmetry, the nondiagonal componentsPomust also van-  which interact with inner particles via the potential
ish (otherwise shear forces would exisind the lateral com-  45(r/ o) =%/ (mpyar) Wherep,q denotes the density of wall

ponents should be identical. So, we have particles. The sum over the wall particles then yieldsz).°
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The static and dynamic properties of this model werewalk) chains were “synthesized,” i.e., only the average bond
studied in the bulk when gradually supercooling towards théength and bond anglé&nown from previous bulk simula-
glass transitiot®?°~?*The model begins to develop sluggish tions) were used to build a chain &f(=10) monomers. This
relaxation if the temperature drops beldw 0.7 and yields a initial state corresponds to very high energjesually E(t
critical temperature of mode-coupling theory af. pu  =0)>10%] due to the occurrence of extremely short dis-
=0.45 (Ref. 20 upon further cooling. We quote this value tances between nonbonded monomers.
for the sake of comparison with the film results to be dis-  The surplus of energy must be removed to prevent nu-

cussed below. merical instabilities. For the bulk this can be done by replac-
ing the full LJ potential by a softer one. The LJ potential is
B. Contribution of the walls to the normal pressure then switched on smoothly.For our model, however, it was

necessary to keep th@ull) wall potential from the very be-
ginning of the simulation to avoid penetration of the walls.
We thus left the potentials unchanged, but used an adaptive
time step: First, the maximum forde,,,, and the maximum
Q/elocnyumax were determined. A time step was then cho-
sen so that the resulting displacement of a particle, which is
subject toF,,, and moves with initial velocity ., in direc-

As the wall potential acts only in the normal direction,
the expressiongl?2) and(14) for P+ remain unchanged. To
obtain the contribution of the walls tBy one can consider

Eq. (18) for the extended system & +2 particles. Starting
from Eq.(18) one can show that

M tion of Fpay, Would bedr,,,=10 3. This (empirica) value
puals.iK(z)= E Fw(Zi— Zoowwa) © (2 — 2) is only applicable ifF,, does not point in direction of a
bond vector whose sizb is closer to the maximum bond

length R, (seeUggne) than 103, since a displacement of
><®(Z—Zbotwan)> - K<E Fw this size could break the bond. In such a situation we chose
=1 dr mas=(Ro—bmay)/2 instead of 103 to adjust the time step
(bmay denotes the largest measured bond lengthe equa-
X (Ziopwal— Zi) O (Ziopwai— 2) O (z2— zi)> , tions of motion were then integrated with this time step and
the procedure was repeated.

(27) After about 250 MD steps the velocities of all particles
were renewed by drawing them from the Maxwell distribu-
tion, and the time derivative of the volume was set to zero.
; These steps are important to warrant the numerical stabilit
< 2<Ziopal for all planes. From Eq27) it follows that the of our prO(I:Dedure OIlDJI’ criterion for the end of this stage Wasy

force Fyy of a wall on a particle contributes to the normal hat th dist betw dicl hould not b
pressure on a given plane if the plane lies between the pa[‘ at the minimum distance between particles should not be
smaller than a certain value, empirically 0.8, and that the

ticle and the wall. | f th t hould not be too f
Similarly, one can derive the contribution of the walls normart pressure of the system should not be 100 far away

= -2
within the IK1 approximation by starting from E€1). This  Tom the external value, i.e|Pn(t) —Pn,ext/Pn,ex<10"%,

whereF(z) = —dUw(2)/dz, Zyowai<Zzi<Ziopwan for all (in-
nen particles(i.e., excluding the wall particlesand z,quya

yields* WhereEN(t) was computed as an average over the last 20
samples preceding time The sample distance was empiri-
walls, K _ cally chosen to 10 exp(IJMD steps to take into account
P 2 FW Zbotwall) 5(Zi Z) . .
stronger correlations at lower temperatures. Since we kept

M the film thicknessD fixed, the simulation at constant pres-
2 sure was realized by varying the areaA) of the simulation
W(Ztopwall z )5( Z )

)>|H

box parallel to the walls. During this initial stage a high bath
29) temperatureT =1, was used.

After this initial stage(with a typical duration of 10MD
where the sum runs over inner particles only, as beforesteps the time step could be set th=0.003. This value is
Since Fy(z,—2')8(z;—2) is equivalent toF\(z—2')5(z;  close to that used in previous bulk simulatidAghe system
—2), PralsIKl(7) can be written as a product of the density was then slowly cooled down to the desired temperature by
profile and a contribution from the walls, i.e., gradually reducing temperature in a step-wise fashion: The

_ _ _ _ bath temperature was set to the next smaller value and the
(2)=[Fw(Z Zoowa) = Fud Ziopwai— 2)1(2)- system was propagatedrfa a certain amount of time before
the bath temperature was decreased again.

At the end of the cooling process the sampling of the

The equilibration of the system was done in the NpTmean-square displacement of the chain centers parallel to the
ensemble. The production runs, however, were performed iwalls, gs(t), and of the volume was started. The system was
the NVT ensemble because we are also interested in analypropagated untigj3,= 9Ree,, whereR.q denotes the compo-
ing the dynamics of the films later dfor preliminary results  nent of the chain’s end-to-end vector parallel to the walls.
see Ref. 1B This criterion suffices to reach the free diffusive limit and to
At the beginning of the simulation the velocities of all equilibrate the system completely. During this period the
particles were set to zero and NRRWonreversal-random- system volume was sampled once every 1000 time steps and

walls, K1,
F)N

C. About the simulation
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FIG. 2. Different contributions to the normal pressure profilg(z) fora  FIG. 3. Different contributions to the normal pressure profig(z) for a
film of thicknessD =3 (~2R) atT=1 (high-temperature liquid sttand film of thicknessD=3 (~Ry) at T=1 (high-temperature liquid statand
Pn,ex=1 according to thefull) IK method[see Eq(11)]. The H method  p =1 (vertical dashed lineaccording to the IK1 methofsee Eq(21)].
yields the same resulsee Eq(13)]. The various parts, kinetisolid line), Contrary to Fig. 2, the various parts, kinetéolid line), virial (dashed ling
virial (dashed ling and wall(dashed—dottgdmutually balance one another  and wall(dashed—dotteddo not balance, but amplify one another, resulting
to yield a constant profil®y(z) = Py ex (Circles, as required by mechanical in a (nonphysical oscillatory structure oPy(z) (circles.

stability (see Sec. Il . The difference betweeRy (=1 (vertical dashed

line) andPy(z) shows the accuracy to which we can Ry ¢ in the simu-

lation for this film thickness. The difference is smaller than 2%.

Figures 2 and 3 show the simulation results for the nor-
mal component of the pressure tensBg;, calculated ac-
the average volume of the system was calculated. The equilgording to the IK- and IK1 prescriptions, respectivésee
brated configuration was then further propagated until theegs. (11) and (21)]. Furthermore, they resolve the different
instantaneous volume reached the average value within @ntributions stemming from the kinetic part, the virial
given relative accuracy, usually 18. At this point the pro-  (forces between inner particles, i.e., excluding the Wars
gram fixes this volume and switches to(pure Nose—  the walls. The striking difference between both prescriptions
Hoover Algorithm (NVT ensemblg for production runs in s that the IK1 method yields strong oscillations, whereas the
the canonical ensemble. During a production run samplingyressure profile of the IK method is constant throughout the

was done once every 1000 time steps. film, in agreement with the condition of mechanical stability
(see Sec. 11D,
IV. RESULTS Since the kinetic contribution t®, is proportional to

the density profilep(z), Fig. 2 shows that practically no
particle is present in the vicinity of the walls. The excluded-

In order to analyze the pressure profiles for our modelolume interaction creates a depletion zone of about 0.8 be-
we studied different film thicknesseB & 3,5,10,20) at vari- tween the wall ¢,,,= =1.5) and the monomer positions at
ous temperatures while always keepiRg o= 1. For this this temperature. Any plane in this region separates all par-
external pressure many results for the bulk behavior aréicles of the system, which lie on the side of the plane facing
known1®20-2Here, we want to discuss two representativetowards the inner part of the film, from the wall on the other
cases D=3 (~2Ry whereR,=1.45 is the bulk radius of side. There is no interparticle force across the plane and thus
gyration atT=1, andD=10 (=~7R,) atT=0.42. The tem- the virial contribution to the normal pressure vanishes. The
peratureT=1 corresponds to the high-temperatuiggdi-  behavior ofPy(z) near the wall arises only from the wall-
nary) liquid state of the melt, whereds=0.42 belongs to the particle interaction. This interaction does not depend on the
supercooled temperature regime close to the critical tempergosition of the plane as long as all the particles stay on the
ture of mode-coupling theoyT (D =10)~0.39 (Ref. 13]. opposite side, i.e., as long aéz) ~0. This explains whyP

For a film of thicknes® = 3, 10 independent runs of 10 is constant in the region close to the walls. With increasing
time steps were simulated &t=1 andPy .«=1. The total distance from the wall the density starts to increase from
number of particles was 1000 corresponding to 100 chains afero. Then, the kinetic and virial parts begin to contribute,
length N=10 (this number of monomers per chain was al- whereas the effect of the walls decreases. In this intermediate
ways kept fixed in our simulationsFor D =10 five indepen- region none of the contributions is negligible, but their sum
dent runs were done a@t=0.42. The length of a run was still remains constant, in accord with EQ@5). Very far from
4.4x 10" time steps. Samples were taken every 1000 stepshe walls the contribution of the walls #®y becomes negli-
The much longer simulation time in this case is necessary tgible. There, one expects that the variations of the kinetic
allow for a detailed analysis of the dynamics of the systenmand virial terms must be opposite to each other. A first indi-
which is very slow at this temperature. cation of this opposite behavior can be observed in Fig. 2. A

A. Profiles of Pp(z2): IK1 versus (full) IK
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. T FIG. 6. Tangential componeRt(z) of the pressure tensor as obtained from
FIG. 4. Different contributions to the normal pressure profiig(z) for a the IK formula[Eq. (12] and from the H-formuldEq. (14)] for D=3

film of thicknessD=10 (~7R,) at T=0.42[supercooled state close Tq (~2Ry), T=1 (high-temperature liquid statand Py e~ 1. The thin solid

~0.39 (Ref. 13] and Py =1 (vertical dashed lineaccording to the IK- ) e N o .
method[see Eq(11)]. The H-method gives the same redidee Eq.(13)]. Islrgzlzhoofv;/s;r;izﬁ;etlc contributiokgTp(2) (divided by 15 to put it on the

As in Fig. 2, the various parts, kinetisolid line), virial (dashed ling and
wall (dashed—dotted mutually balance one another and sum up to a con-
stant profile Py(z) =Py ex (Circles, in agreement with the condition of
mechanical stabilitysee Sec. Il comes from the wall-monomer interaction, whereas the os-

cillations in the inner part of the film are in phase with the

virial. The contribution of the virial is negative close to the
better demonstration is, however, shown in Fig. 4 where thevall, reflecting a predominantly attractive interaction be-
film thickness is large enough to exhibit an inner region withtween the monomers. This dominance of the attractive inter-
negligible wall contribution. action is also visible for thécorrec) IK method, but is much

Contrary to that, the various contributions of the IK1 less pronounced in this case.

methods argalmos) in phase. Figure 3 illustrates that the The situation becomes more complicated when studying
strong deviation oﬂ:",L<l from a constant is caused by the the lateral component of the pressure tensor. Here, the two
interaction of the wall with the monomers close to the maxi-alternative formulas, Eqs(12) and (14), can yield com-
mum of p(z) if D=3. If the film thickness increases, Fig. 5 pletely different profiles. Figures 6 and 7 compare the IK and
shows that the oscillations oPy propagate through the the H versions to calculate the lateral press¢¢z) for D
whole film. Close to the wall, the dominant contribution still =3, T=1 andD =10, T=0.42, respectively. Whereas both

methods oscillate in phase with one another for the thicker

4.0 T TTT———r————-
as b ?. 5. 1 25 T T T T T T T T T
i o Py(2) 4
3.0 F Ej — kinetic { k
a5k 8 -- virial 2 ]
%0 —-- walls °
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— dp
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z d 4
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FIG. 5. Different contributions to the normal pressure proflig(z) for a

film of thicknessD=10 (=~7R,) at T=0.42[supercooled state close T FIG. 7. Tangential componef(z) of the pressure tensor as obtained from
~0.39 (Ref. 13] and Py o1 (vertical dashed lineaccording to the IK1  the IK formula[Eq. (12)] and from the H formuldEq. (14)] for D=10
method[see Eq.(21)]. As in Fig. 3, the various parts, kinetisolid line), (=7Rg), T=0.42 [supercooled state close f;~0.39 (Ref. 13] and
virial (dashed ling and wall (dashed—dotted give rise to a nonconstant Py =1 (vertical dashed line The thin solid line shows the kinetic con-
pressure profilg¢circles contrary to the requirement of mechanical stability. tribution kgTp(z).
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FIG. 8. Temperature dependence of the surface tengjaralculated by Eq.
(15), using the IK, H, and IK1 methods fdd=5 (~3R;) and Py eq=1.

FIG. 9. Comparison of the temperature dependence of the surface tension,
7, for D=5 (=3R;) andD =20 (~14R;). The results of the IK method are

The temperatures shown range from the high-temperature, liquid state of trghown only. The other methods! and IK1 methodgyield the samey's

film to the supercooled state. within the error bars, as exemplified in Fig. 8 for=5. The external pres-
sure isPy ex= 1. The temperatures shown range from the high-temperature,
liguid state of the film to the supercooled state.

film, they are anticorrelated f@ = 3. The lateral pressure of

the IK method is positive close to the walls, but negative in ¢ h | Fig. 11 5 si h

the middle of the film, whereas the behavior is just vice versgance from t € wa see '9. as an ?Xamb Ince t €
verage density grows with decreasing temperature in a

for the H method. Due to the aforementioned ambiguity of®) ; . .
P(2) it is impossible to decide which methods yield the S|mulat|(_)n at constant pressure, the maxima and minima of
physically more realistic result. If the film thickness in- the profile become more pronounced. This means that there

creases, the qualitative difference between the IK and Hir€é more monomers in the highly populated layers at low

methods(almos} vanishes and only quantitative differences ':)han at high te:nperatures(,j agg that tfrf1e ?scélllz?on?hof Elroflle
remain. The oscillations oP+(z) clearly reflect the mono- ecome more long ranged. these efiects tignten the hiim so

mer profile. In the inner portion of the film they are much f[hat the free energy needed to move monomers out of the

weaker for the H method than for the IK method. This is Nterface, i.e., the surface tension, should increase as tem-
related to the local nature of E6L4) due to the presence of perature decreases. The same effect is expected when reduc-

delta function. Density oscillations are thus incorporated not"9 the f|_|m t_hlckne_ss bec?‘use the I_aye_rmg 'S more pro-
only in the kinetic term, but also in the virial part of the nounced in thinner films. This expectation is borne out by the

Harasima formula. Both terms partially cancel each other.s'mUIatlon datasee Fig. 9.

Although the profile generated by E(l4) is thus closer to
Pn.ext than that of Eq(12), this should not be considered as

an argument in favor of the H method. A clear distinction Y - ]
between both methods would only be possible if one could ' * % * *
find a quantity which specifically probd3;(z) and whose *
behavior is knowra priori, as it was the case fd?\(z). 14 F o IK-method 3
0 H-method

B. Surface tension and surface of tension 13 F * IK1-method

As mentioned in Sec. Il A, integration of the pressure N’
profiles overz yields the same result for the IK-, H-, and IK1 12 f g
expressions. Therefore, all methods must lead to the sami o g "
surface tensiory [i.e., Eq.(16)]. This expectation is nicely 11k o ﬁ
borne out by the simulation data for all film thicknesses and o
temperatures studied, whegewas calculated by Eq.15).
Figure 8 exemplifies this behavior f@=5(~3R,). With 1ot E
decreasing temperature the surface tension increases kb Y Y T T
about a factor of 1.5. T

Qualitatively, this temperature dependence is expected.IG 0 T wre depend ‘i . ¢ temibEa. (1
The monomer density of a polymer melt close to a hard walf,/C: 10- Temperature dependence of the surface of tersi¢ag. (17)]

. . . determined by the IK, H, and IK1 methods fBr=5 and Py ¢=1. The
exhibits a profile that is large at the wall and decays towardsiq jine shows the simple estimatg, = 1T [Eq. (29)], for the position

the bulk value in an oscillatory fashion with increasing dis- of the wall.
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: - - IK method, the so-called IK1 approaftOn a microscopic
——z,(H-method) scale, our simulation results show significant differences be-
tween the IK and H methods for the lateral comporfef(z)
of the pressure tensor. However, both methods agree with
each other for the normal compond®y(z). They lead to a
constant profile in accord with mechanical stability. On the
other hand, the IK1 formula exhibits strong oscillations of
Pn(2), as also found in Refs. 8 and 9. The origin of this
discrepancy comes from the fact that the IK1 method corre-
sponds to a zeroth-order approximation of the IK expression,
which assumes translational invariance of the two-particle
density p®)(r,:r,) with respect to the difference vect&
=r,—r,. This assumption is not valid in thin films which
exhibit density oscillations that are damped out only gradu-
ally with increasing distance from the wall. This local struc-
o y > 3 s 5 ture becomes more pronounced with decreasing temperature
z and film thickness. The more pronounced it is, the stronger
FIG. 11. Monomer density profile of a film of thickneBs=10 (~7R;) at the IK1 method will d_ewate from the IK expression.
T=0.42[>T.~0.39(Ref. 13] andPy = 1. Since the profile is symmetric However, when integrated over the whole system all
around the middle of the film, the figure only shows one half of it. The scalemethods give the same result. Thus, the surface tengjat,
qf the abscissa was shifted so that the we_tll is placezi=@. The vertical a pIanar system can still be calculated using each of these
I(l)r;i.s mark the values df; computed according to the IK, H and IK1 meth- methods. This is no longer possible for moments of the pres-
sure profiles, such as the surface of tengignThe fact that
IK1 expression can be used to calculate the surface tension
Contrary toy, the discussion of Sec. Il A implies that the @lthough it is based on an incorrect expression for the local
surface of tensiorz,, depends on the method applied. This Pressure ten_sor has occasmnallly7 caus_ed confusion in the lit-
fact is illustrated in Fig. 10 which shows the temperature€rature. For instance, Pandeyal.” applied the IK1 expres-
dependence df; for the IK, H, and IK1 methods. The dif- SIONs to polymer films confined between one repulsive and
ference between IK and the H methods is rather smallone attractive wall, taking the local pressure profiles literally.
whereas the IK1 result lies substantially above the values of "€ Present analysis shows that the pressure profiles pub-
the other two methods. Sincg can be interpreted as the lished in Ref. 17 are incorrect. Thus we hope that the present

distance of the closest approach of a monomer to the walnalysis will help to avoid this confusion in future simulation
i.e., as the effective position of the wall, the following simple Studies.

argument rules out the IK1 result: At temperatdiea par-

ticle can only penetrate into(goft) wall up to the pointz,, = ACKNOWLEDGMENTS
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